
Achieving constant regret for dynamic matching

via state-independent policies

Süleyman Kerimov, Pengyu Qian, Mingwei Yang, and Sophie H. Yu∗

August 26, 2025

Abstract

We study a centralized discrete-time dynamic two-way matching model with finitely many
agent types. Agents arrive stochastically over time and join their type-dedicated queues waiting
to be matched. We focus on state-independent greedy policies that achieve constant regret at
all times by making matching decisions based solely on agent availability across types, rather
than requiring complete queue-length information. Such policies are particularly appealing for
life-saving applications such as kidney exchange, as they require less information and provide
more transparency compared to state-dependent policies.

First, for acyclic matching networks, we analyze a deterministic priority policy proposed by
[KAG23] that follows a static priority order over matches. We derive the first explicit regret
bound in terms of the general position gap (GPG) parameter ϵ—which measures the distance of
the fluid relaxation from degeneracy. Second, for general two-way matching networks, we design
a randomized state-independent greedy policy that achieves constant regret with optimal scaling
O(ϵ−1), matching the existing lower bound established by [KAG24].

Contents

1 Introduction 2
1.1 Related literature . 4
1.2 Notation . 5

2 Model setup 5
2.1 Optimality criterion . 6
2.2 Static-planning and general position gap . 7
2.3 Greedy policies . 9

3 Main results 10
3.1 Static priority policy on acyclic graphs . 10
3.2 Randomized state-independent greedy policy . 12

4 Analysis of static priority policy on acyclic graphs 13
4.1 Warm-up: regret analysis on paths . 13
4.2 Proof of Theorem 1 . 16

∗S. Kerimov is with the Jones Graduate School of Business, Rice University, Houston TX, USA, kerimov@rice.edu.
P. Qian is with the Questrom School of Business, Boston University, Boston MA, USA, pqian@bu.edu. M.
Yang is with the Department of Management Science and Engineering, Stanford University, Stanford CA, USA,
mwyang@stanford.edu. S. H. Yu is with The Wharton School of Business, University of Pennsylvania, Philadelphia
PA, USA, hysophie@wharton.upenn.edu.

1

ar
X

iv
:2

50
3.

09
76

2v
2

 [
cs

.D
S]

 2
3

A
ug

 2
02

5

https://arxiv.org/abs/2503.09762v2

5 Analysis of randomized state-independent greedy policy 19

6 Consistent greedy policy 21

7 Conclusion 22

A Preliminaries on Lyapunov function analysis 27

B Postponed proofs in Section 4 28
B.1 Proof of Proposition 3 . 28
B.2 Proof of Claim 1 . 30
B.3 Proof of Claim 2 . 30
B.4 Proof of Lemma 7 . 31
B.5 Proof of Lemma 8 . 31
B.6 Proof of Lemma 9 . 32
B.7 Proof of Lemma 10 . 33
B.8 Proof of Lemma 11 . 34

C Postponed proofs in Section 6 35
C.1 Proof of Proposition 4 . 35
C.2 Proof of Corollary 1 . 37

D Extension to non-empty initial state 37

1 Introduction

Dynamic matching markets, where agents arrive over time and must be matched based on avail-
ability and compatibility, arise in numerous applications including kidney exchange markets (e.g.,
see [ABB+18]), online carpooling platforms (e.g., see [ÖW20]), and logistics (e.g. see [ET23]). A
fundamental challenge in these markets is to design matching policies that are both efficient and
practical to implement. While state-dependent policies that utilize complete queue-length infor-
mation can achieve strong theoretical guarantees, they may be impractical or undesirable in many
settings; they require maintaining and communicating detailed state information, can be complex
to implement, and may be vulnerable to manipulation when participants strategically misreport
queue-lengths to receive higher priorities.

As opposed to state-dependent policies, state-independent policies are more difficult to manip-
ulate, and they may provide more transparency for agents in life-saving applications such as organ
transplantation.1 In the context of kidney exchange, hospitals may misreport information regarding
the exact length of queues (the number of donor-patients waiting to exchange a kidney with certain
blood types and sensitivity levels) if state-dependent policies are employed by the national kidney
exchange platforms that hospitals are participating in. Whereas, state-independent policies only
require the information on whether certain queues are empty or not at a particular time, which

1On March 2024, Memorial Hermann hospital in Houston, Texas, has halted their liver and kidney transplant
programs over “a pattern of irregularities” [Chr24]. Recently, a New York Times investigation reported that American
organ transplant system is “in chaos”; although federal rules try to ensure that donated organs are offered to the
patients with respect to a priority order, officials tend to skip patients in the waitlists [Tim25]. It is also reported
that skipping patients happens often so that a national kidney registry committee is too overwhelmed to examine
each case closely.

2

indeed requires less information to perform matches. However, relying on less information usually
comes with costs in performance guarantees [AAS25].

Following [KAG23], we focus on state-independent policies in two-way matching networks, where
each match consists of exactly two agent types. Two-way matching captures many practical sce-
narios such as two-way kidney exchanges, where two incompatible patient-donor pairs swap their
intended donors, and ride-hailing platforms, where each driver matches with exactly one rider.
Under this model, agents arrive stochastically over a time horizon T and join their type-dedicated
queues waiting to be matched. The performance of a policy is measured through an all-time regret
performance metric—the maximum difference between the online policy’s accumulated reward and
the optimal offline matching value up to time t for all t ∈ [T]. Achieving all-time constant regret
is particularly significant as it indicates the policy successfully balances short-term and long-term
rewards, maintaining its performance guarantees at all times, not only at the end of the time hori-
zon T . In this setting, greedy policies, which perform matches whenever possible based on current
availability, are particularly appealing due to their simplicity in implementation, and effectiveness
in balancing immediate and future rewards.

A key condition that enables this strong performance guarantee is the general position gap
(GPG) condition, which ensures that the fluid relaxation of the dynamic matching problem has a
unique non-degenerate optimal solution. The GPG parameter ϵ measures the distance of the fluid
relaxation from degeneracy [KAG24, KAG23, Gup24, WXY23], quantifying both the market’s in-
herent thickness and operational stability. Understanding how a policy’s all-time regret scales with
network parameters, e.g., the GPG parameter ϵ and network structure parameters, is crucial, as
these relationships reveal the policy’s stability across different operating environments. Remark-
ably, under the GPG condition, no policy (even with complete state information) can achieve a
regret better than O(ϵ−1) at all times [KAG24]. In this work, we attempt to match this lower
bound with state-independent greedy policies.

Under the GPG condition, [KAG23] introduced a state-independent static priority policy for
two-way acyclic networks. This policy follows a fixed priority order over matches and achieves con-
stant regret at all times, independent of the time horizon T . While the policy is state-independent
and relies only on local queue availability information (i.e., whether each neighboring queue of the
arriving agent is empty or not) rather than full queue-length information, its regret scaling in terms
of problem parameters is unclear. In contrast, the longest-queue greedy policy of [KAG23] for two-
way matching networks achieves an optimal regret scaling of O(ϵ−1) but requires complete queue-
length information of neighboring queues, making it state-dependent. Meanwhile, there exist other
greedy-like approaches for multi-way matching, such as the primal-dual policy of [WXY23] and the
sum-of-square policy of [Gup24]. However, these methods neither maintain state-independence nor
align with our natural greedy matching framework. While these state-dependent policies achieve
the optimal scaling O(ϵ−1), the landscape for state-independent policies remains largely unexplored.

This raises two fundamental questions: (1) How does the regret of the static priority policy scale
with the GPG and network structure parameters? (2) Can we design state-independent policies
that achieve the optimal scaling for general two-way matching networks?

In this paper, we answer the above two questions affirmatively by providing a comprehensive
analysis of state-independent policies in two-way matching networks, and we summarize our contri-
butions as follows. First, we derive an explicit regret bound for the static priority policy on acyclic
networks, showing that the regret scales as O(ϵ−1(1 + 1/ϵ)⌊(dr−1)/2⌋), where dr is the depth of the
network (Theorem 1). While the scaling with network depth suggests limitations of our techniques,
this characterization represents a significant step toward understanding the fundamental trade-offs
in state-independent policy design. We achieve this by simplifying and improving the Lyapunov
techniques from [KAG23].

3

Second, we introduce a novel randomized state-independent greedy policy that achieves the
optimal O(ϵ−1) regret scaling for general networks, including those with cycles (Theorem 2). This
result demonstrates that state independence does not inherently require compromising performance
guarantees. However, compared to static priority policies that only need local queue availability
information, our randomized policy requires global queue availability information when making
decisions at each step. This illustrates a fundamental trade-off between implementation complexity
and performance guarantees for state-independent policies.

To derive these regret bounds, our strategy is to first establish a regret bound under the station-
ary distribution of the system and then translate it into a regret bound at all times. To complete
this translation, one natural approach is to couple the Markov chain starting from an arbitrary
initial state with the Markov chain starting from the steady-state, and argue that the distance
between the states in these coupled chains can be controlled over time.2 This motivates us to
introduce a concept of consistency (Definition 4), and a greedy policy is consistent if under this
policy, for an arbitrary sequential arrival process, when starting from two different initial states,
the distance between the states in these two systems does not grow over time.

[KAG23] claim that all deterministic greedy policies are consistent, which is not correct as
we illustrate via an example (Example 1). Instead, we identify a sufficient and easily-verifiable
condition for a greedy policy to satisfy consistency (Proposition 4), via which we further show
that various natural greedy policies are consistent (Corollary 1). Even though it is common to
study long-run objectives and asymptotical behaviors of matching policies in the literature (see,
e.g., [GW15, NS19, ADSW24]), it is of practical importance to derive all-time regret bounds, since
a large error might occur before the Markov chain is sufficiently mixed. We believe that our results
for consistency can be further applied in other contexts.

1.1 Related literature

Dynamic matching has been extensively studied in various settings. We review several streams of
literature most relevant to our work.

Multi-way dynamic matching. Starting from [KAG24], the multi-way dynamic matching prob-
lem has received extensive attention recently, and the optimal regret scaling of O(ϵ−1) has been
achieved via different policies. [KAG24] propose a batching policy, which performs a maximum
weighted matching periodically. [Gup24] shows that the prominent sum-of-square policy achieves
an optimal regret scaling even under a more general model. Later on, [WXY23] design a policy
based on the primal-dual framework, which can achieve the optimal regret scaling even when the
arrival rates are unknown. [KAG23] consider two-way matching networks and focus on greedy
policies. They show that the longest-queue policy achieves the optimal regret scaling, and they
propose a static priority policy that achieves constant regret at all times only for acyclic match-
ing networks without characterizing how the regret depends on the problem parameters, e.g., the
GPG parameter ϵ. We remark that all the above policies, except for the static priority policy, are
state-dependent.

Dynamic matching on fixed graphs. Similar to our work, numerous papers study the dy-
namic matching problem with a fixed matching configuration by imposing different modeling as-
sumptions. Most literature assumes that each match consists of exactly two agents, where the

2There are also other approaches to complete the translation. For example, [KAG24] achieve this via studying an
exponential Lyapunov function to establish the geometric recurrence of the Markov chain.

4

underlying matching network can be either bipartite [ADSW24, ÖW20, CHS24, KSSW22] or non-
bipartite [AS22, CILB+20]. A common feature of these literature is that they all assume that
agents depart stochastically, and different objectives are considered, such as minimizing the hold-
ing costs [BM15], maximizing the match-specific rewards [CILB+20], or maximizing the generated
rewards minus the holding costs [ADSW24].

Dynamic matching on random graphs. There is a vast literature on dynamic matching
models based on random graphs, where agents arrive over time and can possibly form edges with
the existing agents with fixed probabilities [AAGK17, ALG20, ABJM19]. A common assumption in
this literature is that match values are homogeneous so that the focus is on minimizing the number of
unmatched agents, and the general finding of this literature is that acting greedily is asymptotically
optimal. Recently, [BRS+22] consider a setting where match values are heterogeneous, and as the
market grows large, they show that greedy threshold policies are asymptotically optimal. Another
line of research assumes that the agents lie in a metric space, and the weight of an edge between
two agents is determined by the distance between them [Kan21, BFP23, SYY24].

Network revenue management. In the network revenue management (NRM) problem, there
exist offline resources, and online requests that consume certain amounts of offline resources arrive
dynamically. [TVR98] achieve O(

√
T) regret in the (quantity-based) NRM model via the bid-

price policy. Later on, [JK12] improve the regret to be O(1) via a re-solving policy under the GPG
condition. Since then, constant regret is achieved when the arrival rates are unknown [Jas15], when
the GPG condition does not hold [AG19, BW20, VB19, VBG21, JMZ22], and for a variety of other
related problems [BBP24]. In contrast, for the multi-way dynamic matching problem considered in
this paper, without the GPG condition, a regret lower bound of Ω(

√
T) exists [KAG24].

Stability of stochastic matching systems. The multi-way dynamic matching model is closely
related to the study of stability of stochastic matching systems [MM16, RM21, JMRSL22]. The
connection is established by, e.g., [KAG24, Lemma 4.1] and [Gup24, Lemma 1], which assert that
bounded all-time regret is implied by the stability of queues that are fully utilized by the fluid
relaxation, provided that only the matches actively utilized by the fluid relaxation are performed.
For the special case of two-way matching systems, [MM16] identify sufficient and necessary con-
ditions for stability, and [JMRSL22] show that several policies, including the longest-queue policy
and a generalized max-weight policy, achieve the maximal stability region.

1.2 Notation

For x, y ∈ R, we use x ∧ y to denote min{x, y} and x+ to denote max{x, 0}. For n ∈ Z>0, we use
[n] to denote the set {1, . . . , n}. For a vector v ∈ Rn and an index set J ⊂ [n], we use v+ to denote
(v+1 , . . . , v

+
n) and use vJ ∈ R|J | to denote the vector obtained by restricting v on J . We use ei to

denote the i-th standard basis, i.e., the i-th entry of ei is 1 with all other entries being 0. We use
standard asymptotic notation: for two positive sequences {xn} and {yn}, we write xn = O(yn) if
xn ≤ Cyn for an absolute constant C and for all n; xn = Ω(yn) if yn = O(xn).

2 Model setup

We study a centralized dynamic matching market. There are n types of agents A = [n] and d
types of matches M = [d]. For each m ∈ M, the value of performing a match m is denoted by

5

rm > 0. Following [KAG23], in this paper, we focus on two-way matching structures, i.e., each
match m ∈ M consists of exactly two agent types. We encode the matching structure into a
matching matrix M ∈ {0, 1}A×M, where Mim = 1 if and only if match m involves agent type i
for all i ∈ A and m ∈ M. Assume without loss of generality that each agent type participates
in at least one match. We denote (A,M) as the (undirected) graph where vertices are formed by
agent types and edges are formed by matches. For each agent type i ∈ A, denote N (i) as the set
of neighbors of i in the graph (A,M). If there is a match inM that contains agent types i and j,
we will use m(i, j) to denote this match.

We consider discrete-time arrivals where exactly one agent arrives and joins the type-dedicated
queue at each time t ∈ [T]. For simplicity, we assume that there are no preexisting agents in the
system.3 Let λ ∈ Rn

>0 denote a probability distribution over agent types, where λi represents the
probability of an arriving agent being type i, and

∑n
i=1 λi = 1. For each type i, let Ai(t) denote the

cumulative number of type i arrivals up to and including time t, with ∆Ai(t) := Ai(t)−Ai(t−1) ∈
{0, 1} indicating whether an agent of type i arrives at time t > 0. At each period t, the central
decision maker can perform match m ∈ M only if there are waiting agents of each type contained
in m. This match then generates a reward rm, and the agents participating in the match leave
the system. For the sequence of events within each period, we always assume that matches are
performed after the arrival of an agent. We refer to the tuple G = (M,λ, r) as the matching network,
which captures both the matching structure and the arrival process.

A (randomized) matching policy decides how to (randomly) perform matches at each period.
We will restrict our attention to non-anticipative policies, whose decisions at each moment only
depend on the events happened so far. Given a policy, for all match m ∈ M and time t ≥ 0, we
denote Dm(t) as the number of match m performed by the policy up to and including time t, and
denote ∆Dm(t) := Dm(t)−Dm(t− 1) as the number of match m performed at time t > 0. Define
Qi(t) := (A(t)−MD(t))i as the length of each queue i ∈ A after time t ≥ 0, and we refer to Q(t)
as the state of the system after time t.

2.1 Optimality criterion

The expected total value generated by a policy Π during the first t periods is denoted by RΠ(t) :=
E[rTD(t)]. Let R∗(t) be the expected value attained by the policy that takes no action before time
t and performs matches that maximize the overall rewards up to time t. Formally,

R∗(t) := E

 max rT y
s.t. My ≤ A(t)

y ∈ Zd
≥0

 , (1)

and R∗(t) is straightforwardly an upper bound for RΠ(t) for every policy Π. Define the regret of
a policy Π after time t as R∗(t)−RΠ(t), and define the all-time regret of Π after time T as

Regret(Π, T) := sup
0≤t≤T

(R∗(t)−RΠ(t)).

We say that Π achieves constant regret at all times (or all-time constant regret), if Regret(Π, T)
is upper bounded by a constant that does not depend on T . Note that this performance metric
differs from simply achieving exact hindsight optimality at the end of time horizon T , which can
be attained by a trivial policy that delays all matches until the end of the time horizon T and then

3This is a common assumption made by the literature [KAG23, WXY23], and we refer to Appendix D for discus-
sions on an extension to non-empty initial state, i.e., with the presence of preexisting agents.

6

solves an optimization problem to maximize overall rewards. In other words, to achieve all-time
constant regret, a policy must effectively balance short-term and long-term rewards, ensuring that
decisions made at each step do not compromise overall performance.

2.2 Static-planning and general position gap

We consider the fractional relaxation of the integer programming in (1). In particular, by applying
Jensen’s inequality,

R∗(t) = E

 max rT y
s.t. My ≤ A(t)

y ∈ Zd
≥0

 ≤ max rTx
s.t. Mx ≤ tλ.

x ∈ Rd
≥0

(2)

Replacing z = x/t and adding slack variables (si)i∈A, the linear programming in the RHS can be
rewritten as

SPP(λ) :=

max rT z
s.t. Mz + s = λ

x ∈ Rd
≥0, s ∈ Rn

≥0

,

which we refer to as the static-planning problem.
Next, we introduce the notion of general position gap that captures the stability level of SPP(λ).

This condition is proved necessary for any policy to achieve constant regret at all times (see, e.g.,
[KAG24, Example 3.1]). We note that the definition of general position gap we adopt coincides
with that in [KAG23, KAG24].

Definition 1 (General position gap). A matching network G satisfies the general position gap
(GPG) condition if SPP(λ) has a unique non-degenerate optimal solution (z∗, s∗), i.e., all n basic
variables in this solution are strictly positive. When G satisfies the GPG condition, define the GPG
parameter ϵ as the minimum value of all basic variables, i.e.,

ϵ := min
m∈M ,z∗m>0

z∗m ∧ min
i∈A ,s∗i>0

s∗i . (3)

The GPG condition is a standard assumption in online revenue management and dynamic
matching literature (see, e.g., [JK12, CLY24, KAG24]), and any linear programming can satisfy
this condition with an arbitrarily small perturbation [MC89]. The power of the GPG condition
comes from the following important property (see, e.g., [KAG23, Gup24, WXY23]).

Proposition 1 (Corollary 4.1 in [KAG23]). Suppose that G satisfies the GPG condition with ϵ
defined as (3), and let (z∗, s∗) be the unique non-degenerate optimal solution of SPP(λ). Then, for
every λ′ ∈ Rn

≥0 with ∥λ− λ′∥1 ≤ ϵ, there exists an optimal basic feasible solution to SPP(λ′) with
the same basic activities, i.e., non-zero components, as (z∗, s∗).

Given a matching network G that satisfies the GPG condition with ϵ defined as (3), let (z∗, s∗)
be the unique non-degenerate optimal solution of SPP(λ). DefineM+ := {m ∈ M | z∗m > 0} and
M0 :=M\M+ as the set of active matches and the set of redundant matches, respectively. Also,
define A+ := {j ∈ A | s∗j > 0} and A0 := A \A+ as the set of under-demanded queues and the set
of over-demanded queues, respectively. Note that

ϵ = min
m∈M+

z∗m ∧ min
j∈A+

s∗j > 0.

7

Note that if there exist multiple connected components in the graph (A,M), we can analyze
the policy on each connected component separately, since the actions on one connected component
do not affect the performance on another one. As a result, we assume that the graph (A,M) only
consists of one connected component without loss of generality.

As an important consequence of the GPG condition, which is also commonly used by prior work
(see, e.g., [KAG23, Lemma 5.1] and [Gup24, Lemma 1]), bounding the all-time regret of a policy
can be boiled down to analyzing the total length of the over-demanded queues, provided that the
policy is restricted to active matches.

Lemma 1. Suppose that G satisfies the GPG condition, and let (z∗, s∗) be the unique non-degenerate
optimal solution of SPP(λ). Suppose that the following conditions hold under a policy Π:

1. only matches inM+ are used, and

2.
∑

i∈A0
E[Qi(t)] ≤ B for every t > 0, where B > 0 does not depend on t.

Then, Π achieves constant regret at all times, and Regret(Π, T) ≤ rmaxnB, where

rmax := max
m∈M+

rM .

Proof. Recall that the constraints of SPP(λ) can be written as

[
M I

] [z
s

]
= λ,

where I ∈ Rn×n is the identity matrix. Let MB ∈ Rn×n be the matrix obtained by selecting the
columns of [M I] corresponding to basic variables of SPP(λ), which implies that MB is full-rank.
Hence, (z∗M+

, s∗A+
)T = M−1

B λ. For each vector v ∈ Rn, we use (M−1
B v)M+ to denote the first |M+|

components of M−1
B v. Fix t > 0. Note that

R∗(t) ≤ t · rTM+
z∗ = t · rTM+

(
M−1

B λ
)
M+

and

RΠ(t) = E
[
rTD(t)

]
= E

[
rTM+

(
M−1

B (A(t)−Q(t))
)
M+

]
= E

[
rTM+

(
M−1

B (tλ−Q(t))
)
M+

]
.

Therefore, the regret of Π after time t is

R∗(t)−RΠ(t) ≤ E
[
rTM+

(
M−1

B Q(t)
)
M+

]
≤ rmax ·

∥∥M−1
B

∥∥
∞ · E [∥Q(t)∥1] ≤ rmaxB ·

∥∥M−1
B

∥∥
∞ .

By [KAG23, Theorem 4.1], each entry of M−1
B lies between [−1, 1], which implies

∥∥M−1
B

∥∥
∞ ≤ n,

concluding the proof.

In view of Lemma 1, to achieve constant regret at all times, it suffices to restrict the policies
to only use active matches and control the lengths of over-demanded queues. We note that it is
a common strategy to ignore redundant matches [KAG23, KAG24, Gup24] with few exceptions
[WXY23]. Hence, without loss of generality, we assumeM =M+. Moreover, we allow policies to
discard available agents in under-demanded queues, i.e., queues in A+, at the end of each period,
where discarding agents can be equivalently viewed as setting these agents aside and never matching
them.

8

2.3 Greedy policies

Greedy policies form an important family of policies extensively studied by the dynamic matching
literature [KAG23, MP17], which perform matches whenever possible and discard available agents
in under-demanded queues at the end of each period.

Definition 2 (Greedy policy). A policy is greedy if

1. a match is performed whenever at least one match becomes available, and

2. all available agents in under-demanded queues A+, if not matched after arrival, are discarded
at the end of each period.

Note that we did not specify in Definition 2 which match to perform when there are multiple
available matches, and the tie-breaking rule is allowed to be policy-specific. Next, we list sev-
eral important properties possessed by greedy policies, which can be directly deduced from the
definition:

(P1) At most one match can be performed at each period.

(P2) If a match is performed at time t, then it must contain the agent that arrives at time t.

(P3) For every t > 0, Qi(t) · Qj(t) = 0 for all i, j ∈ A such that m(i, j) ∈ M, and Qi(t) = 0 for
every i ∈ A+.

We say that a state is valid if it satisfies (P3), and valid states are states that can be potentially
reached by greedy policies starting from an empty state.

Next, we introduce state-independent greedy policies, whose matching decisions depend solely
on agent availability across different types - specifically, whether queues are empty or not - rather
than requiring knowledge of the complete state information about exact queue-lengths.

Definition 3 (State-independent greedy policy). A greedy policy is state-independent if its match-
ing decision at time t only depends on the type of the agent arrived at time t, and the availability
of all types of agents, i.e., (1{Qi(t−1)>0})i∈A.

In this paper, we only consider greedy policies that are time-homogeneous Markovian, i.e.,
the matching rule only depends on the current state and does not change over time, and we will
implicitly assume this from now on. Given a greedy policy Π and a valid state q ∈ Zn

≥0, since Π is

time-homogeneous Markovian, we can define xΠm(q) as the probability that each match m ∈ M is
performed at the current period when this period starts with state q. Moreover, let xΠm(q, i) denote
the probability that each match m ∈M is performed at the current period when this period starts
with state q and the agent arriving at this period is of type i ∈ A.

We then define the consistency property of greedy policies, which asserts that when starting
from different initial states with the same arrival process, the difference between the resulting states
does not grow over time.

Definition 4 (Consistency). We say that a greedy policy is consistent if for all valid initial states
Q(0) and Q′(0), for every possible arrival at time 1, there exists a coupling P between Q(1) and
Q′(1) such that

E(Q(1),Q′(1))∼P

[∥∥Q(1)−Q′(1)
∥∥
1

]
≤

∥∥Q(0)−Q′(0)
∥∥
1
,

where the randomness of Q(1) and Q′(1) comes from the randomness used by the policy.

9

As a consequence of a greedy policy being consistent, every bound for the expected total queue-
length under the stationary distribution can be seamlessly translated into a bound for the expected
total queue-length at all times, as stated by the following lemma.

Lemma 2. Let Π be a consistent greedy policy. Suppose that the Markov chain (Q(t))t≥0 is ergodic,
and let π be its stationary distribution. If Eπ[∥Q(0)∥1] ≤ B, then E[∥Q(t)∥1] ≤ 2B for every t ≥ 0.

Proof. Recall that (Q(t))t≥0 are the states that result from Π starting from Q(0) = 0. Let (Q′(t))t≥0

be the states resulting from Π when we start from Q′(0) ∼ π. Fix t ≥ 0. Since Π is consistent, by
induction, there exists a coupling P between Q(t) and Q′(t) such that

E(Q(t),Q′(t))∼P

[∥∥Q(t)−Q′(t)
∥∥
1

]
≤ E

[∥∥Q(0)−Q′(0)
∥∥
1

]
.

Hence,

E [∥Q(t)∥1]− E
[∥∥Q′(t)

∥∥
1

]
= E(Q(t),Q′(t))∼P

[
∥Q(t)∥1 −

∥∥Q′(t)
∥∥
1

]
≤ E(Q(t),Q′(t))∼P

[∥∥Q(t)−Q′(t)
∥∥
1

]
≤ E

[∥∥Q(0)−Q′(0)
∥∥
1

]
= E

[∥∥Q′(0)
∥∥
1

]
.

Therefore,

E [∥Q(t)∥1] ≤ E
[∥∥Q′(t)

∥∥
1

]
+ E

[∥∥Q′(0)
∥∥
1

]
= 2E

[∥∥Q′(0)
∥∥
1

]
≤ 2B,

where the equality holds since Q′(0) follows the stationary distribution π.

In Section 6, we show that several natural greedy policies are consistent via presenting a sufficient
and easily-verifiable condition for consistency.

3 Main results

In this section, we formally present our main results by describing the policies and their regret
bounds. In Section 3.1, we focus on acyclic graphs and state our improved regret bound for the
static priority policy of [KAG23], which is a state-independent policy only requiring availability
information of neighboring queues of the arriving agent. In Section 3.2, we turn to general graphs
and describe our randomized state-independent policy, which requires global queue availability
information yet achieves an optimal regret scaling.

3.1 Static priority policy on acyclic graphs

When the graph (A,M) forms a tree, [KAG23] propose a static priority policy, which is formally
defined below, that achieves constant regret at all times without explicitly upper bounding its
regret in terms of the network parameters. In this section, we improve their analysis and provide
an explicit upper bound for the regret of this policy.

We first introduce static priority policies, which constitute a simple yet powerful family of
state-independent greedy policies widely considered in prior work [KAG23, MP17, ADSW24].

Definition 5 (Static priority policy). Given a strict ordering ≻ over M, we say that a match
m ∈ M has a higher priority than m′ ∈ M if m ≻ m′. The static priority policy with priority
order ≻ is a greedy policy that performs available matches according to their priorities, choosing
the highest priority match whenever one or more matches are available.

10

Next, we formally describe the priority order ≻ adopted by the static priority policy of [KAG23]
for acyclic matching networks, which we denote as SP. When (A,M) forms a tree, by [KAG23,
Lemma 3.1], there is precisely one under-demanded queue, i.e., |A+| = 1, and we denote it as r.
We view (A,M) as a tree rooted at r. Given any directed path starting from r to i ∈ A0, for any
two matches (edges) m,m′ ∈M on this path, we have m ≻ m′ if and only if m is farther away from
r than m′. In other words, for each node i ∈ A0, each match connecting i and one of its children is
prioritized over the match connecting i and its parent. An illustration of the construction of this
priority order is given in Figure 1.

λ1

λ2

λ7 λ8

λ3

λ4

λ5

λ6

6

5 7

3 4

21

Figure 1: A matching network with root node r = 6. One possible priority order is labeled on
the matches, where smaller numbers indicate higher priorities. For example, if there is an arriving
agent of type 2 and both queues of type 1 and type 3 agents are non-empty, then SP performs the
match (1, 2) instead of (2, 3) based on the priority order.

SP achieves elegant simplicity in acyclic networks through its natural construction. The key
step is identifying the unique under-demanded node by solving the static planning problem SPP(λ).
Using this node as the root of the tree, priorities are assigned systematically from root to leaves, with
matches further from the root receiving higher priority. This construction aligns with the following
intuition: nodes further from the under-demanded root are more demanded, thus warranting higher
priority for their matches.

The stability property of this policy is notable – under the GPG condition, even when arrival
rates vary (as long as they stay within an ϵ-neighborhood of the original rates), the optimal matching
structure and performance guarantees of the SP policy remain valid. Following this specific priority
structure is crucial, as [KAG23, Example 6.2] demonstrates that even small deviations from this
order can fail to achieve constant regret at all times.

Proposition 2 (Theorem 3.2 in [KAG23]). Suppose that G satisfies the GPG condition, and the
graph (A,M) forms a tree. Then, SP is state-independent and achieves constant regret at all times.

While [KAG23] establishes that the regret of SP remains bounded independent of T , their
analysis does not characterize how this regret depends on the network structure or the GPG pa-
rameter ϵ. This limitation leaves a critical aspect of the policy’s performance uncharacterized, as
the GPG parameter ϵ measures the distance of the fluid relaxation from degeneracy and captures
both market thickness and operational stability. Such characterization would reveal how the policy
performs across different operating environments and market conditions, information that is crucial
for practical implementations.

To address this analytical gap, we provide the first explicit regret bound for SP in the following
theorem, whose proof is presented in Section 4. The bound reveals how the policy’s performance
depends on both structural parameters (e.g., the tree depth dr) and the GPG parameter ϵ.

11

Theorem 1. Suppose that G satisfies the GPG condition with ϵ defined as (3), and the graph
(A,M) forms a tree. Then,

Regret(SP, T) ≤ rmax ·
n22dr

ϵ

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
,

where rmax = maxm∈M+ rm and dr is the depth of the tree when rooted at r.

3.2 Randomized state-independent greedy policy

In this section, we design a randomized state-independent greedy policy that achieves constant
regret at all times. We formally present this policy in Algorithm 1. Fix t > 0, and we describe the
behaviors of the policy at time t. Define

U+(t) := {i ∈ A | Qi(t− 1) > 0} and U0(t) := A \ U+(t)

as the sets of non-empty and empty queues at the beginning of time t, respectively. Since the
policy discards unmatched agents in under-demanded queues A+ at the end of each period, we
have A+ ∩ U+(t) = ∅. Define a new arrival vector λ̃(t) such that

λ̃i(t) =

{
λi, i ∈ U0(t),
λi + ϵ/n, i ∈ U+(t),

which does not necessarily satisfy
∑

i∈A λ̃i(t) = 1. Let (z∗, s∗) be the unique non-degenerate

optimal solution of SPP(λ),4 and let ϵ be the GPG parameter of G. Since
∥∥∥λ− λ̃(t)

∥∥∥
1
≤ ϵ, by

Proposition 1, there exists an optimal basic feasible solution (z̃(t), s̃(t)) to SPP(λ̃(t)) with the same
basic activities as (z∗, s∗), which implies (Mz̃(t))i = λ̃i(t) for every i ∈ A0.

Suppose an agent of type j ∈ A arrives at time t, and j has at least one non-empty neighboring
queue, i.e., U+(t) ∩ N (j) ̸= ∅; otherwise, there are no matches we can perform. By (P3), we have
Qj(t − 1) = 0 and hence λ̃j(t) = λj . For each non-empty neighboring queue i ∈ N (j) ∩ U+(t) of
the arriving agent, we match this agent to an agent of type i with probability

z̃m(i,j)(t)∑
k∈N (j)∩U+(t) z̃m(k,j)(t)

.

Finally, we update Q(t) accordingly. It is easy to verify that the matching rule described above
ensures RG to be a greedy policy.

The following theorem upper bounds the regret of RG, whose proof is presented in Section 5.

Theorem 2. Suppose that G satisfies the GPG condition with ϵ defined by (3). Then, Algorithm 1,
denoted as RG, is state-independent and achieves constant regret at all times. Moreover,

Regret(RG, T) ≤ 3rmaxn
2

ϵ
,

where rmax = maxm∈M+ rm.

4Note that for any fixed availability configuration of agents, the optimal matching probabilities remain the same.
Since there are at most 2n possible availability configurations with n agent types, we can precompute the optimal
solutions for all O(2n) cases in advance.

12

Algorithm 1: Randomized Greedy (RG)

Q(0)← 0;
for t = 1, . . . , T do
U+(t)← {i ∈ A | Qi(t− 1) > 0}; U0(t)← A \ U+(t);
Define λ̃(t) ∈ Rn such that λ̃i(t) = λi for i ∈ U0(t) and λ̃i(t) = λi + ϵ/n for i ∈ U+(t);
Let (z̃(t), s̃(t)) be the optimal solution to SPP(λ̃(t));
An agent of type j ∈ A arrives;
Match the arriving agent to an agent in each queue i ∈ N (j) ∩ U+(t) with probability
proportional to z̃m(i,j)(t);

if the arriving agent is matched to an agent in queue i then
Qi(t)← Qi(t)− 1;

else
Qj(t)← Qj(t) + 1{j /∈A+};

end

end

4 Analysis of static priority policy on acyclic graphs

In this section, we analyze the regret of the static priority policy on acyclic graphs. We first
demonstrate in Section 4.1 our main proof idea by focusing on a simpler example when the matching
network is a path. Then, we present the proof of Theorem 1 in Section 4.2.

4.1 Warm-up: regret analysis on paths

As a warm-up, when (A,M) forms a path with at least four nodes, we show how to bound the
expected queue-lengths for the three nodes farthest away from the root. Combining with Lemma 1,
this implies a regret upper bound consistent with Theorem 1 when the path consists of at most four
nodes. In particular, we will iteratively bound the queue-lengths in a bottom-up manner starting
from the leaf node, and our analysis clearly illustrates the necessity of the dependence on network
depth in the regret bound achieved by our approach.

Let A = {1, 2, · · · , n} andM = {1, 2, · · · , n− 1}, where j ∈ M denote the match of (j, j + 1).
Here, we consider the case when n is the under-demanded node with s∗n > 0 and A+ = {n}. Then,
the root of (A,M) is node n by construction. We illustrate the constructed matching network in
Figure 2.

λ1 λ2 λ3 λn−1 λn

r1 r2 . . .
rn−1

Figure 2: A path network where A+ = {n} (indicated with the yellow vertex).

Note that under SP, the priority order ≻ is unique: for all k, l ∈ M, k ≻ l if and only if
k < l. We introduce the following family of (artificial) systems S = {Si | 1 ≤ i < n} and construct
a coupling with our original system such that each system is equipped with the same arrival process
as in the original system. In system Si, at the end of each period, all available agents of type j
with i + 1 ≤ j ≤ n are removed from the system. In particular, whenever there is an arrival of
agent type i+1, if there is no agent of type i present in the system, then the arriving agent of type
i+ 1 leaves the system unmatched. Under Si, denote the number of agents of type j in the queue

13

at the end of time t by Qi
j(t) for 1 ≤ j ≤ n. Note that for all t ≥ 0 and 1 ≤ j ≤ i, we have

Qi
j(t) = Aj(t)−Di

j−1(t)1{j>1} −Di
j(t)1{j<n} , (4)

where for any 1 ≤ j ≤ n − 1, Di
j(t) denotes the number of match of (j, j + 1) performed up to

and including time t in Si, and we set Di
0(t) = Di

n(t) = 0. In particular, by the property of Si,
Qi

j(t) = 0 for any j ∈ {i+ 1, . . . , n}.
The following proposition establishes a fundamental alternating pattern in queue-length com-

parisons between each Si and the original system under SP. Remarkably, this pattern’s structure
depends on whether i is odd or even, revealing an intrinsic connection between the static priority
ordering and queue-length behaviors.

Proposition 3. Under SP, for any t ≥ 0 and 1 ≤ i < n, if i is odd,

Qi
2m(t) ≤ Q2m(t) , Qi

2m+1(t) ≥ Q2m+1(t) , ∀0 ≤ 2m ≤ i− 1 ; (5)

if i is even,

Qi
2m(t) ≥ Q2m(t), Qi

2m+1(t) ≤ Q2m+1(t) , ∀0 ≤ 2m ≤ i . (6)

The proof is based on an induction argument and is given in Section B.1. Our goal is to use
this coupling to characterize queue-lengths under SP. We also note that this coupling ensures
the processes we are going to analyze to be Markovian; e.g., the process (Q1(t))t≥0 itself is not a
Markov chain, since the transition probabilities depend on the state of queue 2, whereas (Q1

1(t))t≥0

is a Markov chain. In general, by the construction of the artificial systems, (Qi
[i](t))t≥0 is a Markov

chain for all 1 ≤ i < n.
We then introduce the following lemma that characterizes the optimal solution of the static

planning problem SPP(λ).

Lemma 3 (Theorem 4.1 in [KAG23]). For any 1 ≤ i < n, z∗i + z∗i−11{i≥2} = λi.

Following Lemma 3, we get z∗1 = λ1, z
∗
2 = λ2 − λ1, and z∗3 = λ3 − z∗2 = λ3 − λ2 + λ1, and note

that z∗1 , z
∗
2 , z

∗
3 ≥ ϵ, which will be useful to prove the following results. Next, we discuss the intuition

behind the construction of our Lyapunov functions. In S1, we only need to focus on the length
of queue 1, and we naturally adopt the quadratic Lyapunov function L(t) := (Q1(t))

2. When it
comes to S2, to achieve all-time constant regret via Lemma 1, we should have D1(t) ≈ A1(t) and
D2(t) ≈ A2(t)−A1(t). This implies that ideally we want both

A1(t)−D1(t) = Q1(t) and A2(t)−A1(t)−D2(t) = Q2(t)−Q1(t)

to be small. Hence, a natural choice of the Lyapunov function would be L(t) := β(Q1(t))
2+(Q2(t)−

Q1(t))
2 for appropriately chosen coefficient β ≥ 0. However, we always have Q1(t) · Q2(t) = 0 by

(P3), implying that we can safely drop the first term in L(t), giving rise to our final choice of
the Lyapunov function for S2. Similar derivations also lead to our construction of the Lyapunov
function for S3, which will become clear momentarily.

In the following two lemmas, we show that E[Q1(t)] and E[Q2(t)] can be bounded by O(ϵ−1) at
all times respectively.

Lemma 4. E[Q1(t)] ≤ ϵ−1 for all t ≥ 0 under SP.

14

Proof. Consider the Lyapunov function L(t) := (Q1
1(t))

2. Conditioned on L(t) > 0, when an agent
of type 1 arrives, we have Q1

1(t + 1) = Q1
1(t) + 1; when an agent of type 2 arrives, match 1 is

performed under SP and Q1
1(t+ 1) = Q1

1(t)− 1. Thus, for all t ≥ 0, we have

E[L(t+ 1)− L(t) | Q1(t),L(t) > 0] = E[(Q1
1(t+ 1) +Q1

1(t))(Q
1
1(t+ 1)−Q1

1(t)) | Q1(t),L(t) > 0]

≤ −2Q1
1(t)(λ2 − λ1) + 1,

where λ2 − λ1 = z∗2 ≥ ϵ. Per Lemma 14, the Markov chain (Q1
1(t))t≥0 is ergodic, and we denote its

stationary distribution by π. Then by Lemma 12, we have

Eπ[Q
1
1(0)] ≤

1

2(λ2 − λ1)
≤ 1

2ϵ
.

Per Lemma 2 and Corollary 1, we have E[Q1
1(t)] ≤ ϵ−1 for all t ≥ 0. Finally, it follows from

Proposition 3 that E[Q1(t)] ≤ ϵ−1 for all t ≥ 0, since Q1(t) ≤ Q1
1(t) for all t ≥ 0.

Lemma 5. E[Q2(t)] ≤ 2ϵ−1 for all t > 0 under SP.

Proof. Consider the Lyapunov function L(t) := (Q2
2(t)−Q2

1(t))
2. Conditioned on L(t) > 0, we can

either have Q2
1(t) > 0 or Q2

2(t) > 0 by (P3) given that SP is a greedy policy.

Claim 1. For all t ≥ 0 and i = 1, 2, we have

E
[
(L(t+ 1)− L(t) | Q2(t),L(t) > 0, Q2

i (t) > 0
]
≤ −2ϵQ2

i (t) + 1. (7)

The proof of Claim 1 is deferred to Appendix B.2. Using Claim 1, we have

E[(L(t+ 1)− L(t) | Q2(t),L(t) > 0] ≤ −(2ϵQ2
1(t) + 1) · 1{Q2

1(t)>0} − (2ϵQ2
2(t) + 1) · 1{Q2

2(t)>0}
≤ −2ϵ|Q2

2(t)−Q2
1(t)|+ 1,

where the first inequality follows from Claim 1 and the second inequality follows from the fact that
Q2

1(t) · Q2
2(t) = 0 for all t ≥ 0 by (P3). Denote the stationary distribution of the Markov Chain

(Q2
[2](t))t≥0 by π, which is granted by Lemma 14. Per Lemma 12, we have

Eπ[|Q2
2(0)−Q2

1(0)|] ≤
1

2ϵ
,

Per Lemma 2 and Corollary 1, we have E[|Q2
2(t)−Q2

1(t)|] ≤ ϵ−1 for all t ≥ 0. Since Q2
2(t) ≥ Q2(t)

and Q2
1(t) ≤ Q1(t) for all t ≥ 0 by Proposition 3, together with Lemma 4, we get E[Q2

1(t)] ≤ ϵ−1

and E[Q2(t)] ≤ E[Q2
2(t)] ≤ 2ϵ−1 for all t ≥ 0.

Next, we upper bound E[Q3(t)], for which we can no longer achieve the scaling of O(ϵ−1).

Lemma 6. E[Q3(t)] ≤ O(ϵ−2) for all t ≥ 0 under SP.

Proof. Consider the following Lyapunov function

L(t) := β1
(
Q3

1(t)
)2

+ β2
(
Q3

2(t)−Q3
1(t)

)2
+

(
Q3

3(t)−Q3
2(t) +Q3

1(t)
)2

, (8)

where we will determine β1, β2 ∈ R≥0 momentarily. Define B(t) := {i ∈ A | Q3
i (t) > 0} as the set of

non-empty queues at the end of time t. Define the following events E1(t) := {B(t) = {1}}, E2(t) :=
{B(t) = {2}}, E3(t) := {B(t) = {3}}, and E4(t) := {B(t) = {1, 3}}. Note that by (P3), the union of
these events forms a partition when L(t) > 0. Next, we introduce the following claim on bounding
E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, Ei(t)] for 1 ≤ i ≤ 4.

15

Claim 2. For all t ≥ 0, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, E1(t)]
≤ −2 [(β1 + β2) (λ2 − λ1)− (λ3 − λ2 + λ1)] ·

∣∣Q3
3(t)−Q3

2(t) +Q3
1(t)

∣∣+ β1 + β2 + 1.

Moreover, for all k = 2, 3, 4, and t ≥ 0, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, Ek(t)] ≤ −2ϵ
∣∣Q3

3(t)−Q3
2(t) +Q3

1(t)
∣∣+ 3(β1 + β2 + 1).

The proof of Claim 2 is deferred to Appendix B.3. Note that per Claim 2, L(t) has a negative
drift under E2(t), E3(t), E4(t) regardless of the choices of β1 and β2, but the sign of the drift is
unclear under E1(t). Let δ := (β1 + β2)(λ2 − λ1)− (λ3 − λ2 + λ1) be the coefficient in the drift of
L(t) under E1(t). In order to ensure that L(t) has a negative drift under E1(t) as well, we will pick
β1 and β2 to ensure that δ > 0. Therefore, the overall drift is given by

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0] ≤ −2min{δ, ϵ}
∣∣Q3

3(t)−Q3
2(t) +Q3

1(t)
∣∣+ 3(β1 + β2 + 1)

= −2min{δ, ϵ}
∣∣Q3

3(t)−Q3
2(t) +Q3

1(t)
∣∣+ 3(δ + λ3)

λ2 − λ1
.

Since the third condition of Lemma 14 holds by (P3), it follows that the stationary distribution π
of the Markov chain (Q3

[3](t))t≥0 exists by Lemma 14. Moreover, by Lemma 12, and if we choose
appropriate β1 and β2 such that δ = ϵ,

Eπ

[∣∣Q3
3(0)−Q3

2(0) +Q3
1(0)

∣∣] ≤ 3(δ + λ3)

2(λ2 − λ1)min{δ, ϵ}
=

3(ϵ+ λ3)

2ϵ(λ2 − λ1)
≤ O(ϵ−2), (9)

where the last inequality holds since λ3 ≤ 1 and λ2−λ1 ≥ ϵ. To translate the expected queue-length
under the steady-state to that at all times, by Lemma 2 and Corollary 1, we have

E
[∣∣Q3

3(t)−Q3
2(t) +Q3

1(t)
∣∣] ≤ O(ϵ−2)

for all t ≥ 0. Moreover, by Lemma 5, we have E[Q2(t)] ≤ 2ϵ−1 for all t ≥ 0. Therefore, by
Proposition 3, we conclude that E[Q3(t)] ≤ E[Q3

3(t)] ≤ O(ϵ−2) for all t ≥ 0.

Remark 1. Note that in the analysis of Lemma 6, we are unable to achieve the optimal scaling
of O(ϵ−1) for the expected length of queue 3 in certain cases by using the generalized quadratic
Lyapunov function defined in (8). Specifically, when λ3 = Ω(1) and λ2 − λ1 = O(ϵ), the last
inequality in (9) will be tight. Furthermore, when generalizing our analysis to matching networks
with an arbitrary depth, similar situations would repetitively occur as the depth grows, indicating
that it is inevitable for the resulting regret to depend on the depth.

4.2 Proof of Theorem 1

Now, we generalize the arguments in Section 4.1 to prove Theorem 1. For each node i ∈ A, let C(i)
be the set of children of i; denote T (i) as the set of nodes in the subtree rooted at i (including i),
and denote T −(i) := T (i) \ {i}. For all i, j ∈ A, let d(i, j) be the (unweighted) distance between i
and j. For each i ∈ A, define di := maxj∈T (i) d(i, j) as the depth of the subtree rooted at i. Let
A− := {i ∈ A | di > 0} denote the set of non-leaf nodes.

Given the optimal solution (z∗, s∗) of SPP(λ), for each i ∈ T −(r), define wi := z∗m with m being
the match connecting i and its parent; define wr := s∗r > 0. By (3), ϵ ≤ wi ≤ 1 for every i ∈ A.

16

For each i ∈ A, denote P(i) := {j ∈ A | i ∈ T −(j) with d(j, i) ≡ 0 (mod 2)} as the set of
ancestors of i whose depth has the same parity with i. We then recursively set αi, which will be
the coefficient of our Lyapunov function, as

αi := 1 +
1

wi

∑
j∈P(i)

αj (λj − wj) , ∀i ∈ A− . (10)

Note that for every i ∈ {r}∪C(r), we have P(i) = ∅ and then αi = 1. Next, we define the following
generalized quadratic Lyapunov function

L(t) :=
∑
i∈A−

αi

(
fi(Q(t))+

)2
, ∀t ≥ 0 (11)

where for every i ∈ A− and v ∈ Rn,

fi(v) :=
∑

j∈T −(i)

(−1)d(i,j)+1vj . (12)

Notably, our Lyapunov function is the same as the one used in [KAG23] if we do not take the
positive parts. For their Lyapunov function, it is difficult to keep track of the coefficients {αi}i∈A− ,
as mentioned in [KAG23]. Instead, we will show that this modification leads to simplified analysis,
allowing us to derive an explicit upper bound for the regret.

The following lemma upper bounds {αi}i∈A− .

Lemma 7. For every i ∈ A−, αi ≤ (1 + ϵ−1)⌊d(r,i)/2⌋.

Fix t ≥ 0, and we aim to upper bound E[L(t+1)−L(t) | Q(t)], where the expectation is taken
over the randomness of the arrival at time t+ 1. Let x := xSP(Q(t)) denote the probabilities that
matches in M are performed by SP at time t + 1. Let E1 := {i ∈ A− | fi(Q(t)) > 0} be the set
of nodes with a strictly positive fi(Q(t)). The next lemma simplifies the Lyapunov drift that we
hope to upper bound.

Lemma 8. It holds that

E[L(t+ 1)− L(t) | Q(t)] ≤ 2
∑
i∈E1

αi · fi(Q(t)) · fi(λ−Mx) + n

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
. (13)

Now, our goal is to upper bound the RHS of (13). Define E2 := {i ∈ A− |
∥∥QC(i)(t)

∥∥
1
> 0} as the

set of nodes i such that at least one of its child nodes has a non-empty queue under Q(t). Observe
that fi(Q(t)) > 0 for every i ∈ E1, and the following lemma establishes that fi(λ − Mx) < 0
for all i ∈ E2, and fi(λ − Mx) ≤ λi − wi for every i ∈ E1 \ E2. This ensures that the sum∑

i∈E1∩E2 αi ·fi(Q(t))·fi(λ−Mx) is negative, which partially contributes to establishing the negative
Lyapunov drift.

Lemma 9. fi(λ−Mx) = −wi for every i ∈ E2, and fi(λ−Mx) ≤ λi − wi for every i ∈ E1 \ E2.

To further ensure the Lyapunov drift being negative, it suffices to further upper bound
∑

i∈E1\E2 αi·
fi(Q(t)) ·fi(λ−Mx), which leads to upper bounding fi(Q(t)) for i ∈ E1 \E2. For every i ∈ A− \E2,
let H(i) be the set of nodes j ∈ T −(i) ∩ E2 that satisfy the following conditions:

1. d(i, j) ≡ 0 (mod 2), and

17

2. for every k ∈ P(j) ∩ T −(i) (node on the path between i and j (excluding i and j) with
d(i, k) ≡ 0 (mod 2)), k /∈ E2.

To visualize the construction of H(i), one can imagine walking from i down to the leaf nodes in
the subtree rooted at i with step size 2. If we encounter a node in E2, then we add the current
node into H(i) and stop; otherwise, we continue walking. One can also see by this description that
T −(j) ∩ T −(k) = ∅ for all j, k ∈ H(i) with j ̸= k, i.e., there is no overlapping between any two
rooted subtrees with roots j, k ∈ H(i).

The following lemma states that for every i ∈ A− \ E2, we can upper bound fi(Q(t)) by the
sum of fj(Q(t)) for all j ∈ H(i).

Lemma 10. For every i ∈ A− \ E2,

fi(Q(t)) ≤
∑

j∈H(i)

fj(Q(t)).

Now, we put the above three lemmas together and upper bound the first term in the RHS of
(13), establishing a negative drift for the Lyapunov function. Note that∑
i∈E1

αi · fi(Q(t)) · fi(λ−Mx) =
∑

i∈E1∩E2

αi · fi(Q(t)) · fi(λ−Mx) +
∑

i∈E1\E2

αi · fi(Q(t)) · fi(λ−Mx)

≤
∑

i∈E1∩E2

αi · fi(Q(t)) · (−wi) +
∑

i∈E1\E2

αi · fi(Q(t)) · (λi − wi)

≤
∑

i∈E1∩E2

αi · fi(Q(t)) · (−wi) +
∑

i∈E1\E2

αi(λi − wi)
∑

j∈H(i)

fj(Q(t))

=
∑
i∈E2

fi(Q(t))

−1{i∈E1} · αiwi +
∑

j∈E1\E2

1{i∈H(j)} · αj(λj − wj)

 ,

where the first inequality holds by Lemma 9, the second inequality holds by Lemma 10, and the
last equality holds since H(i) ⊆ E2 for every i ∈ E1 \ E2 ⊆ A− \ E2. To upper bound the above
quantity, we consider each i ∈ E2 separately. On one hand, for every i ∈ E2 \ E1, since fi(Q(t)) ≤ 0
by the definition of E1, we have

fi(Q(t))

−1{i∈E1} · αiwi +
∑

j∈E1\E2

1{i∈H(j)} · αj(λj − wj)


= fi(Q(t))

 ∑
j∈E1\E2

1{i∈H(j)} · αj(λj − wj)

 ≤ 0.

On the other hand, for every i ∈ E1 ∩ E2, which implies fi(Q(t)) > 0, it holds that

−1{i∈E1} · αiwi +
∑

j∈E1\E2

1{i∈H(j)} · αj(λj − wj) ≤ −αiwi +
∑

j∈P(i)∩(E1\E2)

αj(λj − wj)

≤ −αiwi +
∑

j∈P(i)

αj(λj − wj) = −wi,

18

where the first inequality holds since i ∈ H(j) implies j ∈ P(i), and the last equality holds by (10).
Combining the above three displayed equations, we conclude that∑

i∈E1

αi · fi(Q(t)) · fi(λ−Mx) ≤ −
∑

i∈E1∩E2

fi(Q(t)) · wi. (14)

By Lemma 8, (14), and the fact that ϵ ≤ wi ≤ 1 for every i ∈ A, we get

E[L(t+ 1)− L(t) | Q(t)] ≤ −2ϵ
∑

i∈E1∩E2

fi(Q(t)) + n

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
. (15)

Then, we translate the above drift of the Lyapunov function in terms of f to a drift in terms of the
total queue-length via the following lemma.

Lemma 11. For every q ∈ Zn
≥0,

1

2dr

∑
i∈A0

qi ≤
∑

i∈E1∩E2

fi(q).

Combining (15) and Lemma 11, we obtain

E[L(t+ 1)− L(t) | Q(t)] ≤ − ϵ

2dr−1
∥Q(t)∥1 + n

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
,

which implies that the Markov chain (Q(t))t≥0 is ergodic by Lemma 14. Denote the stationary
distribution of this Markov chain to be π. By applying Lemma 12 with f(Q(t)) = ϵ

2dr−1 ∥Q(t)∥1,
g(Q(t)) = L(t), and c = n(1 + ϵ−1)⌊(dr−1)/2⌋, we get

Eπ [∥Q(0)∥1] ≤
n2dr−1

ϵ

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
.

By Corollary 1 and Lemma 2, we obtain

E [∥Q(t)∥] ≤ n2dr

ϵ

(
1 +

1

ϵ

)⌊(dr−1)/2⌋

for every t ≥ 0. Finally, the regret bound of SP follows from Lemma 1. All the omitted proofs in
this subsection can be found in Appendix B.

5 Analysis of randomized state-independent greedy policy

We prove Theorem 2 in this section. The state-independence of RG comes from its description.
Then, we analyze the Markov chain (Q(t))t≥0 by using the following quadratic Lyapunov function
for t ≥ 0:

L(t) := ∥Q(t)∥22 =
∑
i∈A0

(Qi(t))
2,

where the second equality holds since Qi(t) = 0 for every i ∈ A+. Fix t ≥ 0, and we upper bound
E[L(t+1)−L(t) | Q(t)], where the expectation is taken over the randomness of the arrival process

19

and RG. Let x := xRG(Q(t)) denote probabilities that matches in M are performed by RG at
time t+ 1. By standard calculation (see, e.g., [KAG23, Proposition 5.1]),

E[L(t+ 1)− L(t) | Q(t)] ≤ 2⟨Q(t), λ−Mx⟩+ 1.

For each match m ∈ M that contains types i and j such that i ∈ U+(t) and j ∈ U0(t), m is
performed at time t + 1 if and only if an agent of type j arrives and RG decides to match this
agent with an agent in queue i, which implies that

xm = λj ·
z̃m(t)∑

k∈N (j)∩U+(t) z̃m(k,j)(t)
≥ λj ·

z̃m(t)∑
k∈N (j) z̃m(k,j)(t)

= λj ·
z̃m(t)

(Mz̃(t))j
= λj ·

z̃m(t)

λ̃j(t)
= λj ·

z̃m(t)

λj
= z̃m(t).

Hence, for each queue i ∈ U+(t),

(Mx)i =
∑

j∈N (i)

xm(i,j) ≥
∑

j∈N (i)

z̃m(i,j)(t) = (Mz̃(t))i = λ̃i(t).

As a result,

E[L(t+ 1)− L(t) | Q(t)] ≤ 2⟨Q(t), λ−Mx⟩+ 1

≤ 2
∑

i∈U+(t)

Qi(t)(λi − λ̃i(t)) + 1 = −2 ϵ
n
∥Q(t)∥1 + 1, (16)

where the both equalities hold since Qi(t) = 0 for every i ∈ U0(t).
Next, we combine the negative drift (16) with Lemma 13 to upper bound the expected total

queue-length. Fix t ≥ 0. By (P1) and (P2), the variation of ∥Q(t)∥2 is bounded by

∥Q(t+ 1)∥2 − ∥Q(t)∥2 ≤ ∥Q(t+ 1)−Q(t)∥2 = ∥∆A(t+ 1)−M∆D(t+ 1)∥2 ≤ 1.

Then, we bound the expected decrease of ∥Q(t)∥2, i.e., E[∥Q(t+ 1)∥2 − ∥Q(t)∥2 | Q(t)]. When
∥Q(t)∥2 ≥ n/ϵ, we get

E [∥Q(t+ 1)∥2 − ∥Q(t)∥2 | Q(t)] ≤ E

[
∥Q(t+ 1)∥22 − ∥Q(t)∥22

2 ∥Q(t)∥2

∣∣∣∣∣ Q(t)

]

≤ E

[
−2 ϵ

n ∥Q(t)∥1 + 1

2 ∥Q(t)∥2

∣∣∣∣∣ Q(t)

]
≤ − ϵ

2n
,

where the first inequality holds by x − y ≤ (x2 − y2)/(2y) for x ∈ R and y > 0 [CJK+06, Lemma
3.6], the second inequality holds by (16), and the last inequality holds since ∥Q(t)∥1 ≥ ∥Q(t)∥2.

Now, we apply Lemma 13 on Ψ(t) = ∥Q(t)∥2 with K = 1, η = ϵ/(2n), and B = n/ϵ, which
gives

E [∥Q(t)∥2] = E [∥Ψ(t)∥] ≤ 2 +
n

ϵ
+

1− ϵ
2n

ϵ
n

=
3

2
+

2n

ϵ
≤ 3n

ϵ
,

where the last inequality holds since ϵ ≤ 1 and n ≥ 2. Finally, the all-time constant regret of RG
follows from Lemma 1.

20

6 Consistent greedy policy

In this section, we investigate the sufficient conditions for a greedy policy to be consistent (Defini-
tion 4). Recall that [MP17, Lemma 4] establish the consistency for static priority policies when no
agents are discarded. Also, [KAG23, Lemma 5.3] claim that all (deterministic) greedy policies are
consistent, which is not accurate as we will demonstrate. We present a general sufficient condition,
which is easy to verify, for a (randomized) greedy policy to be consistent. Then, we show that all
static priority policies and the longest-queue policy of [KAG23], which discard available agents in
under-demanded queues, meet this condition. All the omitted proofs in this section can be found
in Appendix C.

We start with an example to illustrate that certain deterministic greedy policies do not satisfy
consistency, refuting [KAG23, Lemma 5.3].

Example 1. Assume that n is sufficiently large and the graph (A,M) forms a path such that for
every i ∈ [n−1], there is a match inM containing types i and i+1. To describe a greedy policy, it
suffices to specify, under an arbitrary valid state q, which match to perform when an agent of type
i > 1 arrives with queues i− 1 and i+ 1 being non-empty at the same time. Under this situation,
our greedy policy Π works as follows: if q1 = 0, then Π performs the match m(i− 1, i); otherwise,
Π performs the match m(i, i + 1). In other words, when queue 1 is empty, Π acts like the static
priority policy with priority order ≻ such that m(i− 1, i) ≻ m(i, i+ 1) for every i > 1; otherwise,
Π acts like the static priority policy with priority order ≻′ such that m(i, i + 1) ≻′ m(i − 1, i) for
every i > 1.

Next, we give the initial states and specify the arrival process. Let Q(0) = 0 and Q′(0) =
(1, 0, . . . , 0). The first four arriving agents are of types 3, 5, 4, 6, respectively. During the first
four periods, Π will perform m(3, 4) and m(5, 6) under Q, and perform m(4, 5) under Q′. Hence,
∥Q(4)∥1 = 0 and ∥Q′(4)∥1 = 3, which implies∥∥Q(4)−Q′(4)

∥∥
1
= 3 >

∥∥Q(0)−Q′(0)
∥∥
1
.

Therefore, Π is not consistent.

We remark that in the above example, one can repeat the arrival pattern to make the distance
between Q(t) and Q′(t) arbitrarily large as t increases. That is, the next four arriving agents are
respectively of types 8, 10, 9, 11, and so on.

Next, we present our sufficient condition for a greedy policy to be consistent as follows.

Proposition 4. Let Π be a greedy policy such that for all valid states q and q′, for every possible type
i of arrival at time 1 such that qN (i) ̸= 0 and q′N (i) ̸= 0, defining x := xΠ(q, i) and x′ := xΠ(q′, i),
we have ∑

j∈N=

(
xm(i,j) − x′m(i,j)

)+
+

∑
j∈N<

xm(i,j) ≤
∑
j∈N<

x′m(i,j), (17)

where N= := {j ∈ N (i) | qj = q′j} and N< := {j ∈ N (i) | qj < q′j}. Then, Π is consistent.

Here, we give some high-level explanations of the condition (17). Recall that the definition
of consistency (Definition 4) asks for a coupling between Q(1) and Q′(1), which is equivalent to
coupling m ∼ xΠ(Q(0), i) and m′ ∼ xΠ(Q′(0), i), that satisfies certain conditions. Then, in view
of the structure of the desired couplings (see Lemma 16) and the optimal way to construct such
couplings, (17) appears naturally as a sufficient condition to achieve this.

21

We note that similar results also appear in prior work, e.g., [SYY24, Theorem 6]. Since agents
are divided into offline and online sides in their setting, whereas all agents in our model are online,
their result cannot be directly applied to ours.

Recall that the longest-queue policy, which is a greedy policy that achieves constant regret
at all times [KAG23], adopts the following matching rule: When the arriving agent has multiple
non-empty neighboring queues, select the one with the largest length to match to, with ties broken
in favor of the queue with the smallest index.5 Now, we apply Proposition 4 to show that all static
priority policies and the longest-queue policy are consistent.

Corollary 1. All static priority policies and the longest-queue policy are consistent.

7 Conclusion

In this paper, we investigate the performance of state-independent greedy policies in two-way
matching networks. We first give an explicit regret bound for the static priority policy on acyclic
matching networks, which grows with the depth of the network, and show that this is inevitable
using our Lyapunov approach. We leave the problem of pinpointing the tight regret scaling of the
static priority policy as an open problem, and it would also be interesting to find a static priority
policy for cyclic matching networks that achieves constant regret at all times.

Next, by presenting a randomized state-independent greedy policy with an optimal regret scaling
of O(ϵ−1), we reveal that state-independence does not necessarily lead to a compromise in perfor-
mance and does not require the matching network to be acyclic, which we believe will inspire future
research on state-independent policies. However, compared to static priority policies, it requires
the information on availability of each agent type rather than merely the availability of agent types
neighboring to the arriving agent. Hence, it would be promising to provide a state-independent
greedy policy with both the optimal regret scaling and less needed information.

Our findings reveal an interesting informational trade-off between state-dependent and state-
independent policies. While both the longest-queue greedy policy and the randomized greedy policy
achieve the optimal regret scaling, the former requires complete queue-length information of neigh-
bors of the arriving agent’s queue, while the latter requires global queue availability information
(whether a queue is empty or not). In contrast, while we establish an explicit constant regret bound
for the static priority policy which does not necessarily achieve the optimal regret scaling, the policy
only requires the local queue availability information. In particular, in settings where querying and
communicating the exact queue-length information is more costly than simply querying availability
information of queues, the state-independent policies we study in this work might be preferred to
state-dependent policies without compromising a strong performance guarantee.

For multi-way matching networks where each match might contain more than two agent types,
both the primal-dual policy of [WXY23], which greedily schedules matches, and the sum-of-square
policy of [Gup24], which greedily commits agents to matches, can achieve constant regret at all
times. Nevertheless, both policies do not fit into our greedy framework since they may not nec-
essarily perform matches even with the presence of sufficient available agents. Hence, another
intriguing future direction is to devise state-independent policies for multi-way matching networks
that achieve constant regret at all times. Notably, there exists an example with a multi-way match-

5In [KAG23], ties are broken arbitrarily when there are multiple longest queues. However, the longest-queue policy
with an arbitrary tie-breaking rule is not necessarily consistent. To illustrate, under two different states, when the
sets of longest neighboring queues under two states are identical, if the policy breaks ties differently under two states,
then the consistency condition would be violated.

22

ing network such that the regret of any greedy policy grows linearly with T [KAG24, Example 3.2],
indicating that the concept of state-independence also needs to be correspondingly generalized.

While our work establishes strong theoretical guarantees for state-independent policies, an im-
portant direction for future research is to formalize their practical benefits of transparency and
resistance against manipulation. Combining our results with the literature on strategic behaviors
in queueing systems (e.g., [ERIZ25]) could help demonstrate how state-independent policies provide
robustness against strategic agents under precise game-theoretic assumptions.

References

[AAGK17] Ross Anderson, Itai Ashlagi, David Gamarnik, and Yash Kanoria. Efficient dynamic
barter exchange. Operations Research, 65(6):1446–1459, 2017.

[AAS25] Alireza AmaniHamedani, Ali Aouad, and Amin Saberi. Adaptive approximation
schemes for matching queues, 2025.

[ABB+18] Itai Ashlagi, Adam Bingaman, Maximilien Burq, Vahideh Manshadi, David Gamarnik,
Cathi Murphey, Alvin E Roth, Marc L Melcher, and Michael A Rees. Effect of match-
run frequencies on the number of transplants and waiting times in kidney exchange.
American Journal of Transplantation, 18(5):1177–1186, 2018.

[ABJM19] Itai Ashlagi, Maximilien Burq, Patrick Jaillet, and Vahideh Manshadi. On matching
and thickness in heterogeneous dynamic markets. Operations Research, 67(4):927–949,
2019.

[ADSW24] Angelos Aveklouris, Levi DeValve, Maximiliano Stock, and Amy Ward. Matching
impatient and heterogeneous demand and supply. Operations Research, 2024.

[AG19] Alessandro Arlotto and Itai Gurvich. Uniformly bounded regret in the multisecretary
problem. Stochastic Systems, 9(3):231–260, 2019.

[ALG20] Mohammad Akbarpour, Shengwu Li, and Shayan Oveis Gharan. Thickness and infor-
mation in dynamic matching markets. Journal of Political Economy, 128(3):783–815,
2020.

[AS22] Ali Aouad and Ömer Sarıtaç. Dynamic stochastic matching under limited time. Op-
erations Research, 70(4):2349–2383, 2022.

[BBP24] Santiago R Balseiro, Omar Besbes, and Dana Pizarro. Survey of dynamic resource-
constrained reward collection problems: Unified model and analysis. Operations Re-
search, 72(5):2168–2189, 2024.

[BFP23] Eric Balkanski, Yuri Faenza, and Noémie Périvier. The power of greedy for online
minimum cost matching on the line. In Proceedings of the 24th ACM Conference on
Economics and Computation, pages 185–205, 2023.

[BM15] Ana Buỳić and Sean Meyn. Approximate optimality with bounded regret in dynamic
matching models. ACM SIGMETRICS Performance Evaluation Review, 43(2):75–77,
2015.

23

[BRS+22] Jose H Blanchet, Martin I Reiman, Virag Shah, Lawrence M Wein, and Linjia Wu.
Asymptotically optimal control of a centralized dynamic matching market with general
utilities. Operations Research, 70(6):3355–3370, 2022.

[BW20] Pornpawee Bumpensanti and He Wang. A re-solving heuristic with uniformly bounded
loss for network revenue management. Management Science, 66(7):2993–3009, 2020.

[Chr24] Houston Chronicle. Memorial hermann stops kidney transplants, days after announcing
liver transplant stoppage, May 2024.

[CHS24] Ziyun Chen, Zhiyi Huang, and Enze Sun. Stochastic online correlated selection. In
2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS),
pages 2275–2294. IEEE, 2024.

[CILB+20] Natalie Collina, Nicole Immorlica, Kevin Leyton-Brown, Brendan Lucier, and Neil
Newman. Dynamic weighted matching with heterogeneous arrival and departure rates.
In Web and Internet Economics: 16th International Conference, WINE 2020, Beijing,
China, December 7–11, 2020, Proceedings 16, pages 17–30. Springer, 2020.

[CJK+06] János Csirik, David S. Johnson, Claire Kenyon, James B. Orlin, Peter W. Shor, and
Richard R. Weber. On the sum-of-squares algorithm for bin packing. J. ACM, 53(1):1–
65, 2006.

[CLY24] Guanting Chen, Xiaocheng Li, and Yinyu Ye. Technical note - an improved analysis
of lp-based control for revenue management. Oper. Res., 72(3):1124–1138, 2024.

[ERIZ25] Arturo Estrada Rodriguez, Rouba Ibrahim, and Dongyuan Zhan. On customer (dis-
) honesty in unobservable queues: The role of lying aversion. Management Science,
71(1):844–860, 2025.

[ET23] Myungeun Eom and Alejandro Toriello. Batching and greedy policies: How good are
they in dynamic matching? Available at SSRN 4357375, 2023.

[Gup24] Varun Gupta. Greedy algorithm for multiway matching with bounded regret. Opera-
tions Research, 72(3):1139–1155, 2024.

[GW15] Itai Gurvich and Amy Ward. On the dynamic control of matching queues. Stochastic
Systems, 4(2):479–523, 2015.

[GZ08] Peter WGlynn and Assaf Zeevi. Bounding stationary expectations of markov processes.
In Markov processes and related topics: a Festschrift for Thomas G. Kurtz, volume 4,
pages 195–215. Institute of Mathematical Statistics, 2008.

[Jas15] Stefanus Jasin. Performance of an lp-based control for revenue management with
unknown demand parameters. Operations Research, 63(4):909–915, 2015.

[JK12] Stefanus Jasin and Sunil Kumar. A re-solving heuristic with bounded revenue loss
for network revenue management with customer choice. Mathematics of Operations
Research, 37(2):313–345, 2012.

[JMRSL22] Matthieu Jonckheere, Pascal Moyal, Claudia Ramı́rez, and Nahuel Soprano-Loto. Gen-
eralized max-weight policies in stochastic matching. Stochastic Systems, 2022.

24

[JMZ22] Jiashuo Jiang, Will Ma, and Jiawei Zhang. Degeneracy is ok: Logarithmic re-
gret for network revenue management with indiscrete distributions. arXiv preprint
arXiv:2210.07996, 2022.

[KAG23] Süleyman Kerimov, Itai Ashlagi, and Itai Gurvich. On the optimality of greedy policies
in dynamic matching. Operations Research, 2023.

[KAG24] Süleyman Kerimov, Itai Ashlagi, and Itai Gurvich. Dynamic matching: Characterizing
and achieving constant regret. Management Science, 70(5):2799–2822, 2024.

[Kan21] Yash Kanoria. Dynamic spatial matching. arXiv preprint arXiv:2105.07329, 2021.

[KSSW22] Kristen Kessel, Ali Shameli, Amin Saberi, and David Wajc. The stationary prophet
inequality problem. In Proceedings of the 23rd ACM Conference on Economics and
Computation, pages 243–244, 2022.

[MC89] Nimrod Megiddo and Ramaswamy Chandrasekaran. On the ε-perturbation method
for avoiding degeneracy. Operations Research Letters, 8(6):305–308, 1989.

[MM16] Jean Mairesse and Pascal Moyal. Stability of the stochastic matching model. Journal
of Applied Probability, 53(4):1064–1077, 2016.

[MP17] Pascal Moyal and Ohad Perry. On the instability of matching queues. 2017.

[MS87] Ovil Mangasarian and Tzong Shiau. Lipschitz Continuity of Solutions of Linear In-
equalities, Programs and Complementarity Problems. SIAM Journal on Control and
Optimization, 25(3):583–595, 1987.

[NS19] Mohammadreza Nazari and Alexander L Stolyar. Reward maximization in general
dynamic matching systems. Queueing Systems, 91:143–170, 2019.

[ÖW20] Erhun Özkan and Amy R Ward. Dynamic matching for real-time ride sharing. Stochas-
tic Systems, 10(1):29–70, 2020.

[RM21] Youssef Rahme and Pascal Moyal. A stochastic matching model on hypergraphs.
Advances in Applied Probability, 53(4):951–980, 2021.

[Rob03] Philippe Robert. Stochastic networks and queues. (No Title), 2003.

[SYY24] Amin Saberi, Mingwei Yang, and Sophie H. Yu. Stochastic online metric matching:
Adversarial is no harder than stochastic. CoRR, abs/2407.14785, 2024.

[Tim25] The New York Times. Organ transplant system ‘in chaos’ as waiting lists are ignored,
May 2025.

[TVR98] Kalyan Talluri and Garrett Van Ryzin. An analysis of bid-price controls for network
revenue management. Management science, 44(11-part-1):1577–1593, 1998.

[VB19] Alberto Vera and Siddhartha Banerjee. The bayesian prophet: A low-regret frame-
work for online decision making. ACM SIGMETRICS Performance Evaluation Review,
47(1):81–82, 2019.

[VBG21] Alberto Vera, Siddhartha Banerjee, and Itai Gurvich. Online allocation and pricing:
Constant regret via bellman inequalities. Operations Research, 69(3):821–840, 2021.

25

[WXY23] Yehua Wei, Jiaming Xu, and Sophie H Yu. Constant regret primal-dual policy for
multi-way dynamic matching. Available at SSRN 4357216, 2023.

26

A Preliminaries on Lyapunov function analysis

Lyapunov function analysis is one of the prevalent approaches to bound the expected value of some
function with respect to the stationary state of a Markov chain. Our analysis heavily relies on the
following general tool.

Lemma 12 (Corollary 4 in [GZ08]). Let X = (X(t))t≥0 be a discrete-time S-valued Markov chain
with transition kernel P , and suppose f : S → R≥0. If there exists a function g : S → R≥0 and a
constant c for which ∫

S
P (x, dy)g(y)− g(x) ≤ −f(x) + c for every x ∈ S,

then ∫
S
π(dx)f(x) ≤ c

for every stationary distribution π of X.

The function g in the above lemma is usually referred to as a Lyapunov function. We will also
apply the following lemma, which enables us to directly bound the expectation of the Lyapunov
function at all times instead of only under the stationary distribution.

Lemma 13 (Lemma 5 in [WXY23]). Let Ψ(t) be an {Ft}-adapted stochastic process satisfying:

• Bounded variation: |Ψ(t+ 1)−Ψ(t)| ≤ K;

• Expected decrease: E[Ψ(t+ 1)−Ψ(t) | Ft] ≤ −η, when Ψ(t) ≥ B;

• Ψ(0) ≤ K +B.

Then, we have

E[Ψ(t)] ≤ K

(
1 +

⌈
B

K

⌉)
+K

(
K − η

2η

)
.

The following lemma introduces a generic way of establishing ergodicity of Markov chains.

Lemma 14 ([Rob03], Corollary 8.7). Let (Mt)t≥0 be a discrete-time, homogeneous, irreducible
and aperiodic Markov chain with values in a countable state space X . If there exist a function
f : X → R+ and constants K, η > 0 such that

(i) E[f(M1)− f(M0) | f(M0) > K] ≤ −η,

(ii) E[f(M1) | f(M0) ≤ K] <∞, and

(iii) the set {x ∈ X | f(x) ≤ K} is finite,

then the Markov chain (Mt)t≥0 is ergodic.

27

B Postponed proofs in Section 4

B.1 Proof of Proposition 3

Assume that i is odd. Let us denote by (tk)
∞
k=1 the sequence of times when there is an agent of type

j ≤ i + 1 arrives at Si. For any 0 ≤ t < t0, we have Qi
j(t) = Qj(t) = 0 for any 1 ≤ j ≤ i + 1, and

(5) follows directly. Since there is no arrivals of any type 1 ≤ j ≤ i at time t for any tk < t < tk+1,
then Qi

j(t) = Qi
j(tk) and Qj(t) = Qj(tk). Also, by the property of Si, we have Qi

i+1(t) = 0, and

hence Qi
i+1(t) = 0 ≤ Qi+1(t). Hence, it suffices to prove by induction that for any k ≥ 0, we have

(5) holds for t = tk and 1 ≤ j ≤ i.
We then prove by induction. Suppose k = 1. If the arriving agent at t1 is of type l, where

1 ≤ l ≤ i, then clearly Qi
j(t1) = Qj(t1) = 0 for all 1 ≤ j ≤ i + 1, j ̸= l, and Qi

l(t1) = Ql(t1) = 1.

Then, (5) holds. If the arriving agent at t1 is of type i + 1, then Qi
j(t1) = Qj(t1) = 0 for all

1 ≤ j ≤ i, and Qi+1(t1) = 1. By the property of Si, Qi
i+1(t1) = 0. Then, (5) holds. For k ≥ 1,

suppose that (5) holds for t = tk and consider tk+1. We have the following cases:

• Case 1: Assume that the arriving agent at tk+1 is of type 1.

– Case 1.1: If the arriving agent is not matched to an agent of type 2 in Si at time tk+1,
this implies Qi

2(tk+1) = Qi
2(tk+1 − 1) = 0. Then, Qi

2(tk+1) ≥ 0 = Qi
2(tk+1). Also, by

inductive hypothesis, Q1(tk) ≤ Qi
1(tk), and then Q1(tk+1) ≤ Q1(tk) + 1 ≤ Qi

1(tk) + 1 =
Qi

1(tk+1) given that the arriving agent of type 1 is not matched in Si at time tk+1.

– Case 1.2: If the arriving agent is matched to agent of type 2 in Si at time tk+1, then we
must have Q2(tk) ≥ Qi

2(tk) ≥ 1, which implies that the arriving agent is also matched
to an agent type of 2 in the original system. Then, by inductive hypothesis, Qi

2(tk+1) =
Qi

2(tk)− 1 ≥ Qi
2(tk)− 1 = Qi

2(tk+1), and Qi
1(tk+1) = Qi

1(tk) ≤ Qi
1(tk) = Qi

1(tk+1).

Hence, we get Qi
2(tk+1) ≥ Qi

2(tk+1), and Qi
1(tk+1) ≤ Qi

1(tk+1). For any 3 ≤ j ≤ i, Qj(tk+1) =
Qi

j(tk+1). By inductive hypothesis, (5) holds for t = tk+1.

• Case 2: Assume that the arriving agent at tk+1 is of type l, where 2 ≤ l ≤ i − 1, and l is
odd.

– Case 2.1: Suppose the arriving agent is not matched in the original system at time tk+1.
Then, Ql−1(tk+1 − 1) = Ql−1(tk) = 0 and Ql+1(tk+1 − 1) = Ql+1(tk) = 0. By inductive
hypothesis, Ql−1(tk) ≥ Qi

l−1(tk) and Ql+1(tk) ≥ Qi
l+1(tk), and then Qi

l−1(tk+1 − 1) =

Qi
l−1(tk) = 0 and Qi

l+1(tk+1 − 1) = Qi
l+1(tk) = 0. It implies that the arriving agent is

also not matched in Si at time tk+1. Hence, we have Qi
l+1(tk+1) = Qi

l+1(tk+1− 1) = 0 ≤
Ql+1(tk+1), and Qi

l−1(tk+1) = Qi
l−1(tk+1−1) = 0 ≤ Ql−1(tk+1). By inductive hypothesis,

we have Qi
l(tk) ≥ Ql(tk), and then Qi

l(tk+1) = Qi
l(tk+1−1)+1 = Qi

l(tk)+1 ≥ Ql(tk)+1 =
Ql(tk+1 − 1) + 1 = Ql(tk+1).

– Case 2.2: Suppose the arriving agent is matched to an agent of type l−1 in the original
system at time tk+1.

∗ Case 2.2.1: If the arriving agent is not matched in Si at time tk+1, thenQi
l−1(tk+1) =

Qi
l−1(tk+1−1) = Qi

l−1(tk) = 0 and Qi
l+1(tk+1) = Qi

l+1(tk+1−1) = Qi
l+1(tk+1) = 0. It

follows that Qi
l+1(tk+1) = 0 ≤ Ql+1(tk+1), and Qi

l−1(tk+1) = 0 ≤ Ql−1(tk+1). By in-

ductive hypothesis, we have Qi
l(tk) ≥ Ql(tk), and then Qi

l(tk+1) = Qi
l(tk+1−1)+1 =

Qi
l(tk) + 1 ≥ Ql(tk) = Ql(tk+1 − 1) = Ql(tk+1), in view of that the arriving agent is

not matched in Si but matched in the original system at time tk+1.

28

∗ Case 2.2.2: If the arriving agent is matched to an agent of type l − 1 in Si at
time tk+1, we have Qi

l−1(tk+1) = Qi
l−1(tk+1 − 1) − 1 = Qi

l−1(tk) − 1 ≤ Ql−1(tk) −
1 = Ql−1(tk+1 − 1) − 1 = Ql−1(tk+1), where the inequality holds by inductive
hypothesis (Qi

l−1(tk) ≤ Ql−1(tk)). Similarly, by inductive hypothesis, we can show

that Qi
l(tk+1) ≥ Ql(tk+1), and Qi

l+1(tk+1) ≤ Ql+1(tk+1).

∗ Case 2.2.3: If the arriving agent is matched to an agent of type l + 1 in Si at
time tk+1, then we can show that Ql−1(tk+1) ≤ Ql−1(tk+1) Qi

l(tk+1) ≥ Ql(tk+1),
and Qi

l+1(tk+1) ≤ Ql+1(tk+1). The proof is analogous to the proof for Case 2.2.2
and hence omitted here.

– Case 2.3: Suppose the arriving agent is matched to an agent of type l + 1 in the
original system at time tk+1. By the property of static priority policy, we must have
Ql−1(tk+1 − 1) = Ql−1(tk) = 0. By inductive hypothesis, we have Ql−1(tk) ≤ Ql−1(tk),
and then Ql−1(tk+1 − 1) = Ql−1(tk) = 0. Hence, the arriving agent cannot match to an
agent of type l−1 in Si at time tk+1, and Ql−1(tk+1) ≥ Ql−1(tk+1) = Ql−1(tk+1−1) = 0.

∗ Case 2.3.1: If the arriving agent is not matched in Si at time tk+1, thenQi
l+1(tk+1) =

Qi
l+1(tk+1 − 1) = Qi

l+1(tk) = 0. By inductive hypothesis, we have Ql+1(tk) ≥
Qi

l+1(tk), and then Ql+1(tk+1) ≥ 0 = Qi
l+1(tk+1). By inductive hypothesis, we have

Qi
l(tk) ≥ Ql(tk), and then Qi

l(tk+1) = Qi
l(tk+1 − 1) + 1 = Qi

l(tk) + 1 ≥ Ql(tk) =
Ql(tk+1 − 1) = Ql(tk+1), in view that the arriving agent is not matched in Si but
matched in the original system at time tk+1.

∗ Case 2.3.2: If the arriving agent is matched to an agent of type l + 1 in Si at
time tk+1, we have Qi

l+1(tk+1) = Qi
l+1(tk+1 − 1) − 1 = Qi

l+1(tk) − 1 ≤ Ql+1(tk) −
1 = Ql+1(tk+1 − 1) − 1 = Ql+1(tk+1), where the inequality holds by inductive
hypothesis (Qi

l+1(tk) ≤ Ql+1(tk)). Similarly, by inductive hypothesis, we can show

that Qi
l(tk+1) ≥ Ql(tk+1).

Hence, we get Qi
l−1(tk+1) ≤ Ql−1(tk+1), Q

i
l(tk+1) ≥ Ql(tk+1), and Qi

l+1(tk+1) ≤ Ql+1(tk+1).

For any j ̸= ℓ− 1, ℓ, ℓ where 1 ≤ j ≤ i, Qj(tk + 1) = Qi
j(tk + 1). By inductive hypothesis, (5)

holds for t = tk+1.

• Case 3: Assume that the arriving agent at tk+1 is of type l, where 2 ≤ l ≤ i−1, and l is even.
Then, (5) holds. The proof is analogous to the proof for Case 2 and is therefore omitted.

• Case 4: Assume that the arriving agent at tk+1 is of type i. By the property of Si, we have
Qi

i+1(t) = 0 for any t. Hence, we have Qi
i+1(tk+1) = 0 ≤ Qi+1(tk+1). The rest of the proof

for Case 4 is analogous to the proof of Case 2 and is therefore omitted.

• Case 5: Assume that the arriving agent at tk+1 is of type i + 1. By the property of Si, we
have Qi

i+1(t) = 0 for any t. Hence, we have Qi
i+1(tk+1) = 0 ≤ Qi+1(tk+1).

– Case 5.1: If the arriving agent is not matched in the original system, then Qi(tk+1−1) =
0, and hence Qi(tk+1) = 0. It follows that Qi(tk+1) = 0 ≤ Qi

i(tk+1) = 0.

– Case 5.2: If the arriving agent is matched to an agent of type i in the original system,
Qi(tk+1 − 1) = Qi(tk) ≥ 1. By inductive hypothesis, Qi

i(tk) ≥ Qi(tk) ≥ 1, and then
Qi

i(tk+1 − 1) ≥ 1. Hence, the arriving agent is also matched to an agent of type i in Si,
and then Qi

i(tk+1) = Qi
i(tk) − 1 ≥ Qi(tk) − 1 = Qi(tk+1), given that the arriving agent

is matched to an agent of type i in both the original system and Si.

29

– Case 5.3: If the arriving agent is matched to i + 2 in the original system. Then
we must have Qi(tk+1 − 1) = Qi(tk) = 0, and then Qi(tk+1) = 0. Hence, we have
Qi

i(tk+1) ≥ Qi(tk+1) = 0.

Hence, we get Qi
i(tk+1) ≤ Qi(tk+1), and Qi

i+1(tk+1) ≥ Qi+1(tk+1). For any j ≤ i − 1,
Qj(tk+1) = Qj(tk) and Qi

j(tk+1) = Qi
j(tk). By inductive hypothesis, (5) holds for t = tk+1.

The proof for i being even is analogous to the proof for i being odd and is therefore omitted.

B.2 Proof of Claim 1

First, assume that Q2
1(t) > 0. If an agent of type 1 arrives, then we have

(Q2
2(t+ 1)−Q2

1(t+ 1))− (Q2
2(t)−Q2

1(t)) = −1,
(Q2

2(t+ 1)−Q2
1(t+ 1)) + (Q2

2(t)−Q2
1(t)) = −2Q2

1(t)− 1.

If an agent of type 2 arrives, then we have

(Q2
2(t+ 1)−Q2

1(t+ 1))− (Q2
2(t)−Q2

1(t)) = 1,

(Q2
2(t+ 1)−Q2

1(t+ 1)) + (Q2
2(t)−Q2

1(t)) = −2Q2
1(t) + 1.

And, if an agent of type 3 arrives, L(t+ 1) = L(t). Thus, we have for all t ≥ 0,

E
[
(L(t+ 1)− L(t) | Q2(t),L(t) > 0, Q2

1(t) > 0
]
≤ −2Q2

1(t)(λ2 − λ1) + λ1 + λ2

≤ −2ϵQ2
1(t) + 1,

where we used the fact that λ2 − λ1 ≥ ϵ and λ1 + λ2 ≤ 1.
Now assume that Q2

2(t) > 0. If an agent of type 1 or 3 arrives, then we have

(Q2
2(t+ 1)−Q2

1(t+ 1))− (Q2
2(t)−Q2

1(t)) = −1,
(Q2

2(t+ 1)−Q2
1(t+ 1)) + (Q2

2(t)−Q2
1(t)) = 2Q2

2(t)− 1,

and if an agent of type 2 arrives, then we have

(Q2
2(t+ 1)−Q2

1(t+ 1))− (Q2
2(t)−Q2

1(t)) = 1,

(Q2
2(t+ 1)−Q2

1(t+ 1)) + (Q2
2(t)−Q2

1(t)) = 2Q2
2(t) + 1.

Thus, we have for all t ≥ 0,

E
[
(L(t+ 1)− L(t) | Q2(t),L(t) > 0, Q2

2(t) > 0
]
≤ −2Q2

2(t)(λ3 − λ2 + λ1) + λ1 + λ2 + λ3

≤ −2ϵQ2
2(t) + 1 ,

where we used the fact that λ3 − λ2 + λ1 ≥ ϵ and λ1 + λ2 + λ3 ≤ 1.

B.3 Proof of Claim 2

Under E1(t), any arriving agent with types 1 or 3 increases Q3
1(t) or Q

3
3(t) by 1, respectively. If the

arriving agent is of type 2, Q3
1(t) decreases by 1, and an arriving agent of type 4 does not affect

the queue-lengths since Q3
3(t) = 0. Thus, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, E1(t)]
≤ (−2β1(λ2 − λ1)Q

3
1(t) + β1) + (−2β2(λ2 − λ1)Q

3
1(t) + β2) + (2(λ3 − λ2 + λ1)Q

3
1(t) + 1)

= (−2(β1 + β2)(λ2 − λ1)Q
3
1(t) + β1 + β2) + (2(λ3 − λ2 + λ1)Q

3
1(t) + 1)

= −2 [(β1 + β2) (λ2 − λ1)− (λ3 − λ2 + λ1)] |Q3
3(t)−Q3

2(t) +Q3
1(t)|+ β1 + β2 + 1 ,

30

where the last equality holds because under E1(t), we have Q3
3(t) = Q3

2(t) = 0. Under E2(t), any
arriving agent of type 2 increases Q3

2(t) by 1, and any arriving agent of types 1 or 3 decreases Q3
2(t)

by 1, while Q3
1(t+1) = Q3

3(t+1) = 0. An arriving agent of type 4 does not affect the queue-lengths.
Thus, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, E2(t)] ≤ −2(β2 + 1)(λ3 − λ2 + λ1)Q
3
2(t) + β2 + 1

≤ −2(β2 + 1)ϵ|Q3
3(t)−Q3

2(t) +Q3
1(t)|+ β2 + 1

≤ −2ϵ|Q3
3(t)−Q3

2(t) +Q3
1(t)|+ β2 + 1.

Under E3(t), any arriving agent of type 1 increases Q3
1(t) by 1, any arriving agent of type 2 decreases

Q3
3(t) by 1, any arriving agent of type 3 increases Q3

3(t) by 1, and any arriving agent of type 4
decreases Q3

3(t) by 1. Thus, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, E3(t)] ≤ 2(β1 + β2)λ1 − 2(λ4 − λ3 + λ2 − λ1)Q
3
3(t) + 1

≤ −2ϵ|Q3
3(t)−Q3

2(t) +Q3
1(t)|+ 2(β1 + β2) + 1.

Finally, under E4(t), any arriving agent of types 1 or 3 increases Q3
1(t) or Q

3
3(t) by 1, respectively.

Any arriving agent of type 2 decreases Q3
1(t) by 1, and any arriving agent of type 4 decreases Q3

3(t)
by 1. Thus, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, E4(t)]
≤ −(2(β1 + 1)(λ2 − λ1)Q

3
1(t) + β1 + 1)− (2(β2 + 1)(λ2 − λ1)Q

3
1(t) + β2 + 1)

− 2(λ4 − λ3 + λ2 − λ1)(Q
3
1(t) +Q3

3(t)) + 1)

≤ −2(λ4 − λ3 + λ2 − λ1)(Q
3
1(t) +Q3

3(t)) + β1 + β2 + 3

≤ −2ϵ|Q3
3(t)−Q3

2(t) +Q3
1(t)|+ β1 + β2 + 3,

concluding the proof.

B.4 Proof of Lemma 7

The upper bound straightforwardly holds for i ∈ {r} ∪ C(r). Assume by induction that the upper
bound holds for all j ∈ P(i), and we show that it also holds for i. By (10),

αi = 1 +
1

wi

∑
j∈P(i)

αj(λj − wj) ≤ 1 +
1

ϵ

∑
j∈P(i)

αj ≤ 1 +
1

ϵ

∑
j∈P(i)

(
1 +

1

ϵ

)⌊d(r,j)/2⌋

= 1 +
1

ϵ

⌊d(r,i)/2⌋−1∑
t=0

(
1 +

1

ϵ

)t

=

(
1 +

1

ϵ

)⌊d(r,i)/2⌋
,

where the first inequality holds since wi ≥ ϵ and 0 ≤ wj ≤ λj ≤ 1 for every j ∈ P(i), and the second
inequality holds by the inductive hypothesis. Hence, the upper bound also holds for i, concluding
the proof.

B.5 Proof of Lemma 8

Recall that Q(t+ 1) = Q(t) + ∆A(t+ 1)−M∆D(t+ 1). By (12),

fi(Q(t+ 1))− fi(Q(t)) =
∑

j∈T −(i)

(−1)d(i,j)+1(∆A(t+ 1)−M∆D(t+ 1))j .

31

Since D is a greedy policy, in view of (P1) and (P2), there is precisely one non-zero entry in
∆A(t+ 1)−M∆D(t+ 1), which must be either 1 or −1. Hence,

|fi(Q(t+ 1))− fi(Q(t))| ≤ 1 . (18)

By (11),

E[L(t+ 1)− L(t) | Q(t)] =
∑
i∈A−

αi · E[(fi(Q(t+ 1))+)2 − (fi(Q(t))+)2 | Q(t)].

For each i ∈ A− with fi(Q(t)) < 0, we have fi(Q(t+1)) ≤ fi(Q(t))+1 ≤ 0, and hence fi(Q(t))+ =
fi(Q(t+1))+ = 0. Also, for each i ∈ A− with fi(Q(t)) = 0, we have fi(Q(t+1)) ≤ fi(Q(t))+1 ≤ 1,
and hence (fi(Q(t+ 1))+)2 − (fi(Q(t))+)2 ≤ 1. Recall that E1 := {i ∈ A− | fi(Q(t)) > 0} denotes
the set of nodes i with a strictly positive fi(Q(t)). As a result,

E[L(t+ 1)− L(t) | Q(t)] ≤
∑
i∈E1

αi · E[(fi(Q(t+ 1))+)2 − (fi(Q(t))+)2 | Q(t)] +
∑

i∈A−\E1

αi . (19)

Fix i ∈ E1, which implies fi(Q(t+ 1)) ≥ fi(Q(t))− 1 ≥ 0. It holds that

(fi(Q(t+ 1))+)2 − (fi(Q(t))+)2 = fi(Q(t+ 1))2 − fi(Q(t))2

= (fi(Q(t+ 1))− fi(Q(t)))2 − 2fi(Q(t)) (fi(Q(t))− fi(Q(t+ 1)))

≤ 1 + 2fi(Q(t)) (fi(Q(t+ 1))− fi(Q(t)))

= 2fi(Q(t)) · fi(∆A(t+ 1)−M∆D(t+ 1)) + 1 ,

where the inequality holds by (18), and the last equality holds by (12). Then, we get

E[(fi(Q(t+ 1))+)2 − (fi(Q(t))+)2 | Q(t)] ≤ E[2fi(Q(t)) · fi(∆A(t+ 1)−M∆D(t+ 1)) + 1 | Q(t)]

= 2fi(Q(t)) · fi(λ−Mx) + 1.

Combining the above inequality and (19), we obtain

E[L(t+ 1)− L(t) | Q(t)] ≤
∑
i∈E1

αi(2fi(Q(t)) · fi(λ−Mx) + 1) +
∑

i∈A−\E1

αi

≤ 2
∑
i∈E1

αi · fi(Q(t)) · fi(λ−Mx) + n

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
,

where the second inequality holds by Lemma 7 and the fact that d(r, i) ≤ dr − 1 for every i ∈ A−.

B.6 Proof of Lemma 9

By (12),

fi(λ−Mx) =
∑

j∈T −(i)

(−1)d(i,j)+1(λ−Mx)j

= λi − wi −
∑

j∈T −(i)

(−1)d(i,j)+1(Mx)j , (20)

where the second equality holds by following lemma:

32

Lemma 15 (Theorem 4.1 in [KAG23]). Suppose that G satisfies the GPG condition, and the graph
(A,M) forms a tree. Then, for every i ∈ A−,

wi =
∑

j∈T (i)

(−1)d(i,j)λj .

Hence, to upper bound fi(λ−Mx) given by (20), it suffices to lower bound

(λi − wi)− fi(λ−Mx) =
∑

j∈T −(i)

(−1)d(i,j)+1(Mx)j = E

 ∑
j∈T −(i)

(−1)d(i,j)+1(M∆D(t+ 1))j

∣∣∣∣∣ Q(t)

 .

Conditioning on Q(t), define random variable Wi :=
∑

j∈T −(i)(−1)d(i,j)+1(M∆D(t + 1))j , whose
randomness comes from the arrival at time t + 1. Depending on the matches performed at time
t+ 1, Wi = 0 happens in the following three cases:

1. No match is performed, which implies ∆D(t+ 1) = 0.

2. The performed match (ℓ1, ℓ2) satisfies ℓ1, ℓ2 ∈ A \ T −(i), which implies (M∆D(t + 1))j = 0
for every j ∈ T −(i).

3. The performed match (ℓ1, ℓ2) satisfies ℓ1, ℓ2 ∈ T −(i). In this case, (M∆D(t + 1))j = 0 for
every j ∈ T −(i) \ {ℓ1, ℓ2}, and

(−1)d(i,ℓ1)+1(M∆D(t+ 1))ℓ1 + (−1)d(i,ℓ2)+1(M∆D(t+ 1))ℓ2 = (−1)d(i,ℓ1)+1 + (−1)d(i,ℓ2)+1 = 0,

where the last equality holds since ℓ1 and ℓ2 are adjacent.

As the only remaining case, suppose that the performed match (ℓ1, ℓ2) satisfies ℓ1 = i and ℓ2 ∈ C(i).
In this case, (M∆D(t + 1))j = 0 for every j ∈ T −(i) \ {ℓ2} and (M∆D(t + 1))ℓ2 = 1, implying
that Wi = 1. Hence, we always have Wi ≥ 0, which gives fi(λ−Mx) = λi −wi −E[Wi] ≤ λi −wi.
This concludes the second part of Lemma 9. Furthermore, if i ∈ E2, by the matching rule of SP,
Wi = 1 holds if and only if an agent of type i arrives at time t+1, which happens with probability
λi. Therefore, E[Wi | Q(t)] = λi for i ∈ E2, concluding the first part of Lemma 9.

B.7 Proof of Lemma 10

Recall that E2 := {i ∈ A− |
∥∥QC(i)(t)

∥∥
1
> 0}. Fix i ∈ A− \ E2. Recall that T −(j) ∩ T −(k) = ∅ for

all j, k ∈ H(i). Define U :=
⋃

j∈H(i) T −(j). Since d(i, j) ≡ 0 (mod 2) for every j ∈ H(i), we have∑
k∈U

(−1)d(i,k)+1Qk(t) =
∑

j∈H(i)

∑
k∈T −(j)

(−1)d(j,k)+1Qk(t) =
∑

j∈H(i)

fj(Q(t)).

Moreover, by the definition of H(i), j /∈ E2 for every j ∈ T −(i) \ (U ∪ H(i)) such that d(i, j) ≡ 0
(mod 2), which indicates that Qj(t) = 0 for every j ∈ T −(i) \ U such that d(i, j) ≡ 1 (mod 2).
Hence, ∑

j∈T −(i)\U

(−1)d(i,j)+1Qj(t) =
∑

j∈T −(i)\U

1{d(i,j)≡0 (mod 2)} · (−1)d(i,j)+1Qj(t) ≤ 0.

33

Combining both of the above displayed equations,

fi(Q(t)) =
∑

j∈T −(i)

(−1)d(i,j)+1Qj(t)

=
∑
j∈U

(−1)d(i,j)+1Qj(t) +
∑

j∈T −(i)\U

(−1)d(i,j)+1Qj(t) ≤
∑

j∈H(i)

fj(Q(t)),

concluding the proof.

B.8 Proof of Lemma 11

We will prove a stronger statement that

1

2di

∑
j∈T −(i)

qj ≤
∑

j∈T (i)∩E1∩E2

fj(q) (21)

for every i ∈ A, and Lemma 11 follows by setting i = r.
For those i ∈ A with di = 0, i.e., i is a leaf node, (21) straightforwardly holds since both sides

are equal to 0. Assume by induction that (21) holds for all i ∈ A with di < k such that k ∈ [dr],
and we show that (21) holds for all i ∈ A with di = k. Fix i ∈ A with di = k. Observe that∑

j∈T −(i)∩E1∩E2

fj(q) =
∑

j∈C(i)

∑
k∈T (j)∩E1∩E2

fk(q)

≥
∑

j∈C(i)

1

2dj

∑
k∈T −(j)

qk ≥
1

2di−1

∑
j∈C(i)

∑
k∈T −(j)

qk,

where the first inequality holds by the inductive hypothesis. Hence,∑
j∈T (i)∩E1∩E2

fj(q) ≥ 1{i∈E1∩E2} · fi(q) +
1

2di−1

∑
j∈C(i)

∑
k∈T −(j)

qk,

and it suffices to show that

1{i∈E1∩E2} · fi(q) +
1

2di−1

∑
j∈C(i)

∑
k∈T −(j)

qk ≥
1

2di

∑
j∈T −(i)

qj ,

which is equivalent to

1{i∈E1∩E2} · fi(q) ≥
1

2di

∑
j∈C(i)

qj −
∑

k∈T −(j)

qk

 . (22)

We show that (22) holds under three different cases. Firstly, if i /∈ E1, i.e., fi(q) ≤ 0, then
1{i∈E1∩E2} · fi(q) = 0, and

∑
j∈C(i)

qj −
∑

k∈T −(j)

qk

 ≤ ∑
j∈T −(i)

(−1)d(i,j)+1qj = fi(q) ≤ 0,

34

implying that (22) holds. Next, if i /∈ E2, i.e.,
∥∥qC(i)∥∥1 = 0, then 1{i∈E1∩E2} · fi(q) = 0, and

∑
j∈C(i)

qj −
∑

k∈T −(j)

qk

 = −
∑

j∈C(i)

∑
k∈T −(j)

qk ≤ 0,

implying that (22) holds. Finally, if i ∈ E1 ∩ E2, which implies fi(q) > 0 and 1{i∈E1∩E2} = 1. Then,
by (12),

fi(q)−
1

2di

∑
j∈C(i)

qj −
∑

k∈T −(j)

qk

 =
∑

j∈T −(i)

(−1)d(i,j)+1qj −
1

2di

∑
j∈C(i)

qj −
∑

k∈T −(j)

qk


=

∑
j∈C(i)

(
1− 1

2di

)
qj +

∑
k∈T −(j)

(
(−1)d(i,k)+1 +

1

2di

)
qk


≥

∑
j∈T −(i)

(
1− 1

2di

)
(−1)d(i,j)+1qj

=

(
1− 1

2di

)
fi(q) > 0,

where the inequality holds since qj ≥ 0 for every j ∈ A. This concludes the proof.

C Postponed proofs in Section 6

C.1 Proof of Proposition 4

Fix valid initial states Q(0) and Q′(0), and let i ∈ A be the type of the arriving agent at time 1.
To establish the consistency of Π, we prove a stronger statement that there exists a coupling P
between Q(1) and Q′(1) such that

Pr
(Q(1),Q′(1))∼P

[∥∥Q(1)−Q′(1)
∥∥
1
≤

∥∥Q(0)−Q′(0)
∥∥
1

]
= 1. (23)

For the ease of presentation, we will use a match being performed in Q (resp. Q′) to denote the
match being performed at time 1 with initial state Q(0) (resp. Q′(0).)

Firstly, if QN (i)(0) = Q′
N (i)(0) = 0, then Π will not perform any matches in both Q and Q′.

Hence, Q(1) = Q(0) + 1{i∈A′} · ei and Q′(1) = Q′(0) + 1{i∈A′} · ei, which implies∥∥Q(1)−Q′(1)
∥∥
1
=

∥∥Q(0)−Q′(0)
∥∥
1
,

concluding (23).
Next, if QN (i)(0) = 0 and Q′

N (i)(0) ̸= 0, then Π will not perform any matches in Q and

will perform a (random) match, denoted as m(i, j) for j ∈ N (i), in Q′, which implies Q(1) =
Q(0) + 1{i∈A′} · ei and Q′(1) = Q′(0)− ej . Since we must have Qj(0) = Q′

i(0) = 0 and Q′
j(0) > 0,

it follows that∥∥Q(1)−Q′(1)
∥∥
1
=

∥∥Q(0) + 1{i∈A′} · ei −Q′(0) + ej
∥∥
1

=
∑

k∈A\{i,j}

|Qk(0)−Q′
k(0)|+ |Qi(0)−Q′

i(0) + 1{i∈A′}|+ |Qj(0)−Q′
j(0) + 1|

=
∥∥Q(0)−Q′(0)

∥∥
1
+ 1{i∈A′} − 1

≤
∥∥Q(0)−Q′(0)

∥∥
1
,

35

implying that the naive coupling between Q(1) and Q′(1) (observe that Q(1) is deterministic)
satisfies (23). The case where QN (i)(0) ̸= 0 and Q′

N (i)(0) = 0 can be handled analogously.

It remains to consider the case in which QN (i)(0) ̸= 0 and Q′
N (i)(0) ̸= 0, where the consistency

of Π now comes into play. We slightly abuse notations and define x, x′ ∈ RN (i) such that for every
j ∈ N (i), xj = xΠm(i,j)(Q(0), i) and x′j = xΠm(i,j)(Q

′(0), i). Note that
∑

j∈N (i) xj =
∑

j∈N (i) x
′
j = 1,

i.e., x and x′ are distributions over N (i). To couple Q(1) and Q′(1), it is equivalent to couple j ∼ x
and j′ ∼ x′ since j and j′ uniquely determine Q(1) and Q′(1), respectively. Define N< := {j ∈
N (i) | Qj(0) < Q′

j(0)}, N= := {j ∈ N (i) | Qj(0) = Q′
j(0)}, and N> := {j ∈ N (i) | Qj(0) > Q′

j(0)}.
We first characterize the desired coupling structure in the following lemma.

Lemma 16. If j = j′, j ∈ N>, or j′ ∈ N<, then the states Q(1) and Q′(1) respectively induced by
j and j′ satisfy ∥∥Q(1)−Q′(1)

∥∥
1
≤

∥∥Q(0)−Q′(0)
∥∥
1
.

Proof. Note that Q(1) = Q(0)− ej and Q′(1) = Q′(0)− ej′ . If j = j′, then∥∥Q(1)−Q′(1)
∥∥
1
=

∥∥Q(0)− ej −Q′(0) + ej
∥∥
1
=

∥∥Q(0)−Q′(0)
∥∥
1
.

Next, if j ̸= j′ and j ∈ N>, then∥∥Q(1)−Q′(1)
∥∥
1
=

∥∥Q(0)− ej −Q′(0) + ej′
∥∥

=
∑

k∈N (i)\{j,j′}

|Qk(0)−Q′
k(0)|+ |Qj(0)−Q′

j(0)− 1|+ |Qj′(0)−Q′
j′(0) + 1|

≤
∥∥Q(0)−Q′(0)

∥∥
1
,

where the last inequality holds since Qj(0) > Q′
j(0) and |Qj′(0)−Q′

j′(0)+1| ≤ |Qj′(0)−Q′
j′(0)|+1.

Finally, the case where j′ ∈ N< can be handled analogously.

Now, it suffices to give a coupling P between j and j′ such that with probability 1, at least one
condition in Lemma 16 holds for the pair (j, j′) sampled from P . To start with, we couple elements
in N= maximally, i.e., for every k ∈ N=,

Pr
(j,j′)∼P

[j = j′ = k] = min{xk, x′k}.

Then, we maximally couple the case j′ ∈ N< with the case j ∈ N< and the remaining probability
mass in the case j ∈ N=, i.e.,

Pr
(j,j′)∼P

[j ∈ N< ∪N=, j
′ ∈ N<] = min

 ∑
k∈N<

xk +
∑
k∈N=

(xk − x′k)
+,

∑
k∈N<

x′k


=

∑
k∈N<

xk +
∑
k∈N=

(xk − x′k)
+,

where the last equality holds by (17). So far, we have consumed all probability mass for the case
j ∈ N< ∪ N=. Finally, we arbitrarily couple the case j ∈ N> with the remaining probability mass
for j′. The proof is completed by observing

Pr
(j,j′)∼P

[(j = j′) ∨ (j ∈ N>) ∨ (j′ ∈ N<)] = 1

and by Lemma 16.

36

C.2 Proof of Corollary 1

Fix an arbitrary static priority policy Π with priority order ≻. Fix valid states q and q′, and fix
an agent type i ∈ A satisfying qN (i) ̸= 0 and q′N (i) ̸= 0. Denote x := xΠ(q, i) and x′ := xΠ(q′, i).

Define N= := {j ∈ N (i) | qj = q′j}, N< := {j ∈ N (i) | qj < q′j}, and N> := {j ∈ N (i) | qj > q′j}.
Our goal is to show that (17) holds. Since Π is deterministic, there exist j, j′ ∈ N (i) such that
x = em(i,j) and x′ = em(i,j′). It is easy to verify that (17) holds when j = j′, j ∈ N>, or j

′ ∈ N<.
Now, assume that j ̸= j′, j /∈ N>, and j′ /∈ N<. On one hand, if j′ ≻ j, then we must have qj′ = 0
by the matching rule of Π, contradicting the assumption that j′ /∈ N<. On the other hand, if j ≻ j′,
then we must have q′j = 0, contradicting the assumption that j /∈ N>.

The proof for the longest-queue policy, denoted as LQ, follows a similar argument. Fix valid
states q and q′, and fix an agent type i ∈ A satisfying qN (i) ̸= 0 and q′N (i) ̸= 0. Denote x := xLQ(q, i)

and x′ := xLQ(q′, i). Define N=, N<, and N> similarly. Our goal is to show that (17) holds. Since
LQ is deterministic, there exist j, j′ ∈ N (i) such that x = em(i,j) and x′ = em(i,j′). It is easy
to verify that (17) holds when j = j′, j ∈ N>, or j′ ∈ N<. Now, assume that j ̸= j′, j /∈ N>,
and j′ /∈ N<. On one hand, if j ∈ N=, then we must have qj′ < q′j′ by the matching rule of LQ,
contradicting the assumption that j′ /∈ N<. On the other hand, if j ∈ N<, then q′j′ ≥ q′j > qj ≥ qj′ ,
contradicting the assumption that j′ /∈ N< as well.

D Extension to non-empty initial state

In this section, we discuss how to modify our results when we start from a non-empty initial state,
i.e., Q(0) = q ̸= 0, where we assume that q is finite and does not depend on the time horizon T .
In this case, the upper bound for R∗(t) given in (2) becomes

R∗(t) = E

 max rT y
s.t. My ≤ q +A(t)

y ∈ Zd
≥0

 ≤ max rTx
s.t. Mx ≤ q + tλ.

x ∈ Rd
≥0

By the Lipschitz continuity of LP with respect to the RHS of the constraints [MS87], the value of
the upper bound only increases by a constant that depends on q, r,M . Hence, given an arbitrary
(not necessarily valid) initial state, we modify a greedy policy as follows. At the beginning, if the
initial state is invalid, i.e., there are two adjacent non-empty queues, we keep performing matches
in an arbitrary order until the state becomes valid. Then, we run the greedy policy starting from
the resulting valid state. By doing so, the regret of the policy will only increase by a constant
depending on q, r,M but, importantly, not depending on ϵ.

37

	Introduction
	Related literature
	Notation

	Model setup
	Optimality criterion
	Static-planning and general position gap
	Greedy policies

	Main results
	Static priority policy on acyclic graphs
	Randomized state-independent greedy policy

	Analysis of static priority policy on acyclic graphs
	Warm-up: regret analysis on paths
	Proof of thm:regert-static-priority

	Analysis of randomized state-independent greedy policy
	Consistent greedy policy
	Conclusion
	Preliminaries on Lyapunov function analysis
	Postponed proofs in sec:static
	Proof of Proposition 3
	Proof of Claim 1
	Proof of Claim 2
	Proof of Lemma 7
	Proof of lmm:drift-two-terms
	Proof of lmm:drift-tree
	Proof of lmm:compen
	Proof of lmm:conn-drift-queue-len

	Postponed proofs in sec:con-consis
	Proof of thm:cond-consis
	Proof of cor:consis-priori-sub-model

	Extension to non-empty initial state

