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Abstract

We study a centralized discrete-time dynamic two-way matching model with finitely many
agent types. Agents arrive stochastically over time and join their type-dedicated queues waiting
to be matched. We focus on availability-based policies that make matching decisions based solely
on agent availability across types (i.e., whether queues are empty or not), rather than relying on
complete queue-length information (e.g., the longest-queue policy). We aim to achieve constant
regret at all times with optimal scaling in terms of the general position gap, ϵ, which measures
the distance of the fluid relaxation from degeneracy.

We classify availability-based policies into global and local policies based on the scope of
information they utilize. First, for general networks (possibly cyclic), we propose a global
availability-based policy, probabilistic matching (PM), and prove that it achieves the optimal
all-time regret scaling of O(ϵ−1), matching the known lower bound established by [KAG24].
Second, for acyclic networks, we focus on the class of local availability-based policies, specifically
static priority policies that prioritize matches based on a fixed order. Within this class, we derive
the first explicit regret bound for the previously proposed tree priority policy (TP), showing
all-time regret scaling of O(ϵ−(d+1)/2), where d is the network depth. Next, we introduce a
new truncated tree priority (TTP) policy and prove that it is the first static priority policy to
achieve the optimal all-time regret scaling of O(ϵ−1). These policies are appealing for matching
systems such as queueing and load balancing; they reduce operational costs by using minimal
information while effectively balancing the trade-off between immediate and future rewards.
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1 Introduction

Dynamic matching markets, where agents arrive over time and must be matched based on com-
patibility, arise in numerous applications including kidney exchange markets (e.g., [ABB+18]), on-
line carpooling and ride-hailing platforms (e.g., [ÖW20]), and logistics and delivery systems (e.g.,
[ET25]). In such settings, agents of different types arrive stochastically to type-specific queues,
waiting to be matched. The allowable matches are captured by an underlying compatibility graph,
where edge weights encode edge-specific matching rewards. A central design problem is to construct
online greedy policies that perform well at any time, i.e., balancing immediate and future rewards,
while remaining simple enough to implement in large, distributed systems.

A substantial body of recent literature analyzes dynamic matching policies relative to an of-
fline omniscient benchmark, with a particular focus on the general position gap (GPG) condition.
This condition is generically satisfied when the optimal basic matches (those corresponding to
a basic optimal solution of the fluid relaxation) remain stable under small perturbations of the
model parameters [MC89, JK12, CLY24]. The GPG parameter ϵ quantifies the magnitude of such
allowable perturbations, effectively measuring the distance of the fluid relaxation from degener-
acy [WXY23, KAG24, Gup24, KAG25]. Intuitively, ϵ captures both the inherent “thickness” of
the market and its operational stability: a larger ϵ implies a wider separation between optimal
and suboptimal actions, making it easier for the central planner to consistently perform “correct”
matches. Understanding how a policy’s all-time regret scales with ϵ is therefore crucial, as this
relationship reveals the robustness of the policy across diverse operating environments.

Under the GPG condition, the optimal all-time regret, defined as the maximum expected differ-
ence between the performances of the offline optimum and the policy at any moment, is known to
scale as Θ(ϵ−1) [KAG24]. To achieve this optimal scaling, state-of-the-art policies such as longest-
queue [KAG25], sum-of-squares [Gup24], and primal-dual [WXY23] typically rely on sophisticated,
information-intensive rules that require real-time access to exact queue-length information (see
Figure 1). While the longest-queue policy achieves this optimal scaling using local queue lengths,
and others do so using global queue lengths, it remains an open question whether policies using
substantially less information can match this fundamental O(ϵ−1) limit.

This question is not merely of theoretical interest; it is driven by the operational costs and
vulnerabilities inherent in maintaining fine-grained state information. In many real-world systems,
maintaining and communicating such detailed state information is costly, fragile, or even infeasible.
In large-scale load balancing, for instance, policies requiring instantaneous queue lengths incur
prohibitive communication overheads compared to those using partial information [Mit01, LXK+11,
dBBVLM22]. Furthermore, policies sensitive to exact queue lengths are vulnerable to manipulation
by strategic agents [ES07, ERIZ25] and are less robust to measurement noise or delayed updates
[Ibr18]. These practical limitations motivate the search for availability-based policies that make
decisions based solely on whether queues are empty or not, rather than how long they are. Indeed,
availability information is the minimal information requirement for executing a match, forming the
baseline for state granularity.

To systematically analyze the information requirements for policies achieving the optimal all-
time regret scaling, we classify policies along two dimensions: granularity and scope. The first
dimension distinguishes coarse availability information (binary empty/non-empty status) from fine-
grained queue-length information (exact counts). The second dimension distinguishes local infor-
mation (restricted to the neighbors of the arriving agent) from global information (encompassing
the state of the entire network). Motivated by this classification, our work investigates the suffi-
ciency of minimal-information policies, asking whether coarse, availability-based rules can achieve
the optimal all-time regret scaling as their information-intensive counterparts.
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richer information

Local queue-length-based policy:

Longest-queue [KAG25]: O(ϵ−1)

Global queue-length-based policy:

Primal–dual [WXY23]: O(ϵ−1)

Sum-of-squares [Gup24]: O(ϵ−1)

Local availability-based policy:

Tree priority (acyclic) [KAG25] :

Oϵ(1) =⇒ O
(
ϵ−(d+1)/2

)
Truncated tree priority (acyclic): O(ϵ−1)

Global availability-based policy:

Probabilistic matching: O(ϵ−1)

Figure 1: Information landscape and regret scaling of dynamic matching policies, with the results in
this paper highlighted in blue. The policies are positioned according to the granularity (availability
vs. queue lengths) and scope (local vs. global) of the state information they use, along with their
all-time regret scaling in terms of the GPG parameter ϵ, where Oϵ(1) refers to a constant bound
with an unknown dependence on ϵ, and d denote the depth of the acyclic graph.

1.1 Our contributions

In this paper, we provide a comprehensive analysis of availability-based greedy policies in two-
way matching networks under the GPG condition. Throughout our analysis, we focus on optimal
basic matches. This restriction is justified by the GPG condition, which guarantees that optimal
basic matches remain stable under small perturbations of the model parameters. Our results,
summarized in Figure 1, demonstrate that restricting attention to such availability-based policies
need not sacrifice performance.

For general networks (including those with cycles), we introduce the probabilistic matching
(PM) policy, which is a global availability-based policy, by carefully adapting the probability of
performing each match based on the state of the system. We prove that this policy achieves the
optimal regret scaling of O(ϵ−1) (Theorem 1). This result establishes that fine-grained queue-length
information is not strictly necessary for optimality; coarse availability information suffices, provided
one has a global view of the network.

Next, we turn to acyclic networks, where the reduced network formed by the optimal basic
matches contains no cycles. Central to this setting are under-demanded agent types, defined as
those for which the static planning problem (and consequently any “reasonable” policy) matches
only a fraction of their arrivals. Crucially, every connected component of such a reduced network
possesses a unique under-demanded node [KAG25]. We utilize this unique node as the root to
orient the connected component as a rooted tree, capturing the intuition that nodes further from
the root are increasingly demanded. This structural perspective is pivotal as it allows us to focus
on a family of local availability-based policies, specifically static priority policies. These policies
match agents according to a fixed ordering and have been widely studied in the literature [MP17,
ADSW25, KAG25]. In our setting, we prioritize children over the parent node, meaning that we
prioritize the more demanded nodes over the less demanded ones.

First, we revisit the tree priority (TP) policy proposed by [KAG25]. Leveraging the rooted tree
structure defined above, TP prioritizes matches that are farther away from the under-demanded
root (i.e., prioritizing “children” over “parents”). While TP is known to admit bounded all-time
regret, the scaling of the regret in terms of ϵ was previously unknown. By heavily exploiting the
hierarchical structure of the tree, we derive the first explicit regret bound for TP, showing it scales
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as O(ϵ−(d+1)/2), where d is the network depth (Theorem 2).
Next, we propose the truncated tree priority (TTP) policy, which is the first static priority

policy proven to achieve the optimal O(ϵ−1) regret scaling (Theorem 3). While TTP shares the
same prioritization strategy as TP to efficiently clear over-demanded queues, the critical distinction
lies in the fallback mechanism: upon the arrival of an agent, TTP strictly forbids matching with
its “parent” node, whereas TP allows it as a last resort. This constraint effectively decouples
the system, ensuring one-way propagation of stochasticity. This property enables us to employ
a careful multi-step drift analysis, a novel and necessary technical departure from the standard
one-step drift techniques used in prior work [WXY23, Gup24, KAG25], to establish the optimal
queue-length bound. Remarkably, this result implies that for acyclic graphs, optimality is achievable
using the minimal possible information set: the binary availability of immediate neighbors without
requiring either global visibility or exact queue counts.

1.2 Related literature

Dynamic matching has been extensively studied in various settings. We review several streams of
literature most relevant to our work.

Multi-way dynamic matching. Starting from [KAG24], the multi-way dynamic matching prob-
lem has recently received extensive attention, and the optimal regret scaling of O(ϵ−1) has been
achieved via several policies. [KAG24] propose a batching policy, which performs a maximum
weighted matching periodically. [Gup24] develops a sum-of-square policy that achieves an optimal
regret scaling even under a more general model. Later on, [WXY23] design a policy based on
the primal-dual framework, which can achieve the optimal regret scaling even for unknown arrival
rates. [KAG25] consider two-way matching networks and focus on policies that perform a match
whenever possible. They show that the longest-queue policy achieves the optimal regret scaling,
and they propose the TP policy that achieves constant regret at all times only for acyclic matching
networks without explicitly characterizing the regret.

Dynamic matching on fixed graphs. Similar to our work, numerous papers study the dy-
namic matching problem with a fixed matching configuration by imposing different modeling as-
sumptions. Most literature assumes that each match consists of exactly two agents, where the
underlying matching network can be either bipartite [ÖW20, KSSW22, ADSW25, CHS24] or non-
bipartite [CILB+20, AS22]. A common feature of these literature is that they all assume that
agents depart stochastically, and different objectives are considered, such as minimizing the hold-
ing costs [BM15], maximizing the match-specific rewards [CILB+20], or maximizing the generated
rewards minus the holding costs [ADSW25].

Dynamic matching on random graphs. There is a vast literature on dynamic matching
models based on random graphs, where agents arrive over time and can possibly form edges with
the existing agents with fixed probabilities [AAGK17, ABJM19, ALG20]. A common assumption in
this literature is that match values are homogeneous so that the focus is on minimizing the number of
unmatched agents, and the general finding of this literature is that acting greedily is asymptotically
optimal. Recently, [BRS+22] consider a setting where match values are heterogeneous, and as the
market grows large, they show that greedy threshold policies are asymptotically optimal. Another
line of research assumes that the agents lie in a metric space, and the weight of an edge between
two agents is determined by the distance between them [Kan21, BFP23, YY26, LVY26].
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Network revenue management. In the network revenue management (NRM) problem, there
exist offline resources, and online requests that consume certain amounts of offline resources arrive
dynamically. [TVR98] achieve O(

√
T ) regret in the (quantity-based) NRM model via the bid-

price policy. Later on, [JK12] improve the regret to be O(1) via a re-solving policy under the GPG
condition. Since then, constant regret is achieved when the arrival rates are unknown [Jas15], when
the GPG condition does not hold [AG19, VB19, BW20, VBG21, JMZ22], and for a variety of other
related problems [BBP24]. In contrast, for the multi-way dynamic matching problem considered in
this paper, without the GPG condition, a regret lower bound of Ω(

√
T ) exists [KAG24].

Stability of stochastic matching systems. The multi-way dynamic matching model is closely
related to the study of stability of stochastic matching systems [MM16, RM21, JMRSL23]. The
connection is established by, e.g., [KAG24, Lemma 4.1] and [Gup24, Lemma 1], which assert that
bounded all-time regret is implied by the stability of queues that are fully utilized by the fluid
relaxation, provided that only the matches active in the fluid relaxation are performed. For the
special case of two-way matching systems, [MM16] identify sufficient and necessary conditions
for stability, and [JMRSL23] show that several policies, including the longest-queue policy and a
generalized max-weight policy, achieve the maximal stability region.

1.3 Notation

For x, y ∈ R, we use x ∧ y to denote min{x, y} and x+ to denote max{x, 0}. For n ∈ Z>0, we use
[n] to denote the set {1, . . . , n}. For a vector v ∈ Rn and an index set J ⊂ [n], we use v+ to denote
(v+1 , . . . , v

+
n ) and use vJ ∈ R|J | to denote the vector obtained by restricting v on J . We use ei to

denote the i-th standard basis, i.e., the i-th entry of ei is 1 with all other entries being 0. We use
standard asymptotic notation: for two positive sequences {xn} and {yn}, we write xn = O(yn) if
xn ≤ Cyn for an absolute constant C and for all n; xn = Ω(yn) if yn = O(xn).

For a rooted tree, let C(i) be the set of children of a node i, and let P (i) be the parent of
a non-root node i. For each node i, denote T (i) as the set of nodes in the subtree rooted at i
(including i), and denote T −(i) ≜ T (i) \ {i}.

2 Model

We study a centralized dynamic matching market. There are n types of agents A = [n] and k
types of matches M = [k]. For each m ∈ M, the value of performing a match m is denoted by
rm > 0. Following [KAG25], we focus on two-way matching structures, i.e., each match m ∈ M
consists of exactly two agent types. We encode the matching structure into a matching matrix
M ∈ {0, 1}A×M, where Mim = 1 if and only if match m involves agent type i for all i ∈ A and
m ∈M. Assume without loss of generality that each agent type participates in at least one match.
We denote (A,M) as the (undirected) graph where vertices are formed by agent types and edges
are formed by matches. For each agent type i ∈ A, denote N (i) as the set of neighbors of i in the
graph (A,M). If there is a match in M that contains agent types i and j, we will use m(i, j) to
denote this match.

We consider discrete-time arrivals where exactly one agent arrives and joins the type-dedicated
queue at each time t ∈ [T ]. For simplicity, we assume that there are no preexisting agents in the
system.1 Let λ ∈ Rn

>0 denote a probability distribution over agent types, where λi represents the
probability of an arriving agent being type i, and

∑n
i=1 λi = 1. For each type i, let Ai(t) denote the

1This is a common assumption made by the literature [WXY23, KAG25].
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cumulative number of type i arrivals up to and including time t, with ∆Ai(t) ≜ Ai(t)−Ai(t− 1) ∈
{0, 1} indicating whether an agent of type i arrives at time t > 0. At each period t, the central
decision maker can perform match m ∈ M only if there are waiting agents of each type contained
in m. This match then generates a reward rm, and the agents participating in the match depart.
For the sequence of events within each period, an agent first arrives, and then the decision maker
decides which matches to perform. We refer to the tuple G = (M,λ, r) as the matching network,
which captures both the matching structure and the arrival process.

A (randomized) matching policy decides how to (randomly) perform matches at each period.
We will restrict our attention to non-anticipative policies, whose decisions at each moment only
depend on the events happened so far. Given a policy, for all match m ∈ M and time t ≥ 0, we
denote Dm(t) as the number of match m performed by the policy up to and including time t, and
denote ∆Dm(t) ≜ Dm(t) − Dm(t − 1) as the number of match m performed at time t > 0. We
maintain a queue for each type i ∈ A, which contains all agents of type i in the system that have
not been matched. Define Qi(t) ≜ (A(t) −MD(t))i as the length of each queue i ∈ A after time
t ≥ 0, and we refer to Q(t) as the state of the system after time t. We say that a state is valid
under a policy if it is reachable by the policy from the all-zero state.

2.1 Optimality criterion

The expected total value generated by a policy Π during the first t periods is denoted by RΠ(t) ≜
E[rTD(t)]. Let R∗(t) be the expected value attained by the policy that takes no action before time
t and performs matches that maximize the overall rewards up to time t. Formally,

R∗(t) ≜ E

 max rT y
s.t. My ≤ A(t)

y ∈ Zk
≥0

 , (1)

and R∗(t) is straightforwardly an upper bound for RΠ(t) for every policy Π. Define the regret of
a policy Π after time t as R∗(t)−RΠ(t), and define the all-time regret of Π after time T as

Regret(Π, T ) ≜ sup
0≤t≤T

(R∗(t)−RΠ(t)).

We say that Π achieves constant regret at all times (or all-time constant regret), if Regret(Π, T )
is upper bounded by a constant that does not depend on T . Note that this performance metric
differs from simply achieving exact hindsight optimality at the end of time horizon T , which can
be attained by a trivial policy that delays all matches until the end of the time horizon T and then
solves an optimization problem to maximize overall rewards. In other words, to achieve all-time
constant regret, a policy must effectively balance short-term and long-term rewards, ensuring that
decisions made at each step do not compromise overall performance.

2.2 Static-planning and general position gap

We consider the fractional relaxation of the integer program in (1). By Jensen’s inequality,

R∗(t) = E

 max rT y
s.t. My ≤ A(t)

y ∈ Zk
≥0

 ≤ max rTx
s.t. Mx ≤ tλ.

x ∈ Rk
≥0

(2)
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Replacing z = x/t and adding slack variables (si)i∈A, the linear program in the RHS can be
rewritten as

SPP(λ) ≜
max rT z
s.t. Mz + s = λ

z ∈ Rk
≥0, s ∈ Rn

≥0

,

which we refer to as the static-planning problem.
Next, we introduce the notion of general position gap that captures the stability level of SPP(λ).

This condition is proved necessary for any policy to achieve constant regret at all times (see, e.g.,
[KAG24, Example 3.1]). We note that the definition of general position gap we adopt coincides
with that in [KAG24, KAG25].

Definition 1 (General position gap). A matching network G satisfies the general position gap
(GPG) condition if SPP(λ) has a non-degenerate optimal solution, i.e., all n basic variables in this
solution are strictly positive. When G satisfies the GPG condition with a non-degenerate optimal
solution (z∗, s∗), define the GPG parameter ϵ as the minimum value of all basic variables, i.e.,

ϵ ≜ min
m∈M ,z∗m>0

z∗m ∧ min
i∈A ,s∗i>0

s∗i . (3)

The GPG condition is a standard assumption in online revenue management and dynamic
matching literature (see, e.g., [JK12, CLY24, KAG24]), and any linear program can satisfy this
condition with an arbitrarily small perturbation [MC89]. The power of the GPG condition comes
from the following important property (see, e.g., [WXY23, Gup24, KAG25]).

Proposition 1 (Corollary 4.1 in [KAG25]). Suppose that G satisfies the GPG condition, and let
(z∗, s∗) be a non-degenerate optimal solution of SPP(λ) with ϵ defined as (3). Then, for every
λ′ ∈ Rn

≥0 with ∥λ− λ′∥1 ≤ ϵ, SPP(λ′) has an optimal solution with the same basic activities, i.e.,
non-zero components, as (z∗, s∗).

Given a matching network G that satisfies the GPG condition, let (z∗, s∗) be a non-degenerate
optimal solution of SPP(λ) with ϵ defined as (3). Define M+ ≜ {m ∈ M | z∗m > 0} and M0 ≜
M\M+ as the set of active matches and the set of redundant matches, respectively. Also, define
A+ ≜ {j ∈ A | s∗j > 0} and A0 ≜ A \ A+ as the set of under-demanded queues and the set of
over-demanded queues, respectively. Note that

ϵ = min
m∈M+

z∗m ∧ min
j∈A+

s∗j > 0.

When there exist multiple connected components in the graph (A,M), we can analyze the
policy independently on each connected component, since the actions on one connected component
do not affect the performance on another one. As a result, we assume without loss of generality
that (A,M) only consists of one connected component.

As an important consequence of the GPG condition, which is also commonly used by prior work
(see, e.g., [KAG25, Lemma 5.1] and [Gup24, Lemma 1]), bounding the all-time regret of a policy
can be boiled down to analyzing the total length of the over-demanded queues, provided that the
policy is restricted to active matches.

Lemma 1. Suppose that G satisfies the GPG condition, and let (z∗, s∗) be a non-degenerate optimal
solution of SPP(λ). Suppose that the following conditions hold under a policy Π:

1. Only matches inM+ are performed, and
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2.
∑

i∈A0
E[Qi(t)] ≤ B for every t > 0, where B > 0 does not depend on t.

Then, Regret(Π, T ) ≤ rmaxnB, where rmax ≜ maxm∈M+ rm.

The proof of Lemma 1 is deferred to Section C.1. In view of Lemma 1, to achieve constant regret
at all times, it suffices to restrict the policies to only use active matches and control the lengths
of over-demanded queues. We note that it is a common strategy to ignore redundant matches
[KAG24, Gup24, KAG25] with few exceptions [WXY23]. From now on, we assumeM =M+.

We say that a queue i ∈ A is truncated if, whenever an agent in queue i arrives and is not
matched within the same period, this agent is immediately discarded, where discarding agents can
be equivalently viewed as setting these agents aside and never matching them. We allow policies
to truncate the under-demanded queues, i.e., queues in A+.

2

2.3 Policy information classes

Throughout, we focus on greedy policies that perform at most one match at each period, where
the performed match must include the newly arriving agent. Consequently, all policies studied by
prior work [WXY23, Gup24, KAG25] are greedy policies, with the exception of the batching pol-
icy [KAG24]. We distinguish greedy policies in terms of the information they use when performing
matches:

The first dimension of classification concerns the granularity of the state information. A policy
is availability-based if its matching decision utilizes only availability information across agent types
(i.e., whether a queue is empty or not), representing a coarse level of state information. Conversely,
a policy is queue-length-based if its matching decision utilizes exact queue-length information across
agent types.

The second dimension distinguishes greedy policies based on the scope of the utilized informa-
tion. We classify a policy as local if the matching decision upon the arrival of an agent of type
i ∈ A depends solely on the state information of i’s neighboring queues. If a policy utilizes state
information beyond the local neighbors of the arriving agent, we classify it as global.

Taken together, these two dimensions allow us to classify any greedy policy into one of four
distinct information classes, as illustrated in Figure 1. For example, the longest-queue policy is
local queue-length-based, the TP policy of [KAG25] is local availability-based, and the primal-dual
policy of [WXY23] and the sum-of-squares policy of [Gup24] are global queue-length-based.

3 Main results

In this section, we present our main results regarding the information requirements for optimal
matching policies. Contrary to the intuition that strictly less information might degrade perfor-
mance, our analysis demonstrates that coarse availability information is sufficient to achieve the
optimal all-time regret scaling. We establish this first for general networks via a global availability-
based policy in Section 3.1, and then for acyclic networks via local availability-based policies in
Section 3.2.
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Algorithm 1 Probabilistic matching (PM)

1: Q(0)← 0
2: for t = 1, . . . , T do
3: U+(t)← {i ∈ A | Qi(t− 1) > 0}; U0(t)← A \ U+(t)
4: Define λ̃(t) ∈ Rn such that

λ̃i(t) =

{
λi, i ∈ U0(t),
λi + ϵ/n, i ∈ U+(t),

5: Let (z̃(t), s̃(t)) be an optimal solution of SPP(λ̃(t)) with the same basic activities as (z∗, s∗)
▷ Guaranteed by Proposition 1.

6: An agent of type j ∈ A arrives
7: Match the arriving agent to an agent in each queue i ∈ N (j) ∩ U+(t) with probability

z̃m(i,j)(t)∑
k∈N (j)∩U+(t) z̃m(k,j)(t)

.

8: if the arriving agent is matched to an agent in queue i then
9: Qi(t)← Qi(t)− 1

10: else
11: Qj(t)← Qj(t) + 1{j /∈A+}
12: end if
13: end for

3.1 Global availability-based policy

In this subsection, we propose a global availability-based policy probabilistic matching (PM), which
is formally presented in Algorithm 1, that achieves optimal all-time regret. Fix t > 0, and we
describe the dynamics of the policy at time t. Define U+(t) and U0(t) respectively as the set of
non-empty queues and the set of empty queues at the beginning of time t. Define a new arrival
vector λ̃(t) as in Line 4, which does not necessarily satisfy

∑
i∈A λ̃i(t) = 1. Recall that (z∗, s∗) is

a non-degenerate optimal solution of SPP(λ). Since ∥λ − λ̃(t)∥1 ≤ ϵ, by Proposition 1, SPP(λ̃(t))
has an optimal solution (z̃(t), s̃(t)) with the same basic activities as (z∗, s∗).

Suppose an agent of type j ∈ A arrives at time t, and j has at least one non-empty neighboring
queue; otherwise, there are no matches we can perform. For each non-empty neighboring queue i
of j, we match the arriving agent to an agent of type i with probability proportional to z̃m(i,j)(t).
Finally, we update Q(t) accordingly.

The following theorem bounds the all-time regret ofPM, whose proof is presented in Section 4.1.

Theorem 1 (Probabilistic matching). Suppose that G satisfies the GPG condition with ϵ defined
as (3). Then, PM is global and availability-based, and satisfies

Regret(PM, T ) ≤ O

(
rmax ·

n2.5

ϵ

)
,

where rmax = maxm∈M+ rm.

2Under the GPG condition, without discarding, the expected length of every under-demanded queue will grow
unbounded under any matching policy with bounded all-time regret [KAG24]. Hence, discarding is necessary to
ensure the ergodicity of the Markov chain (Q(t))t≥0.
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The proof of Theorem 1 proceeds by showing that the standard quadratic Lyapunov function
exhibits a negative one-step drift under the matching probabilities chosen by PM.

3.2 Local availability-based policy

In this subsection, we turn to local availability-based policies, assuming that the matching network
(A,M) is acyclic (i.e., it forms a tree). In this setting, [KAG25, Lemma 3.1] establishes the existence
of a unique under-demanded queue, denoted by r, allowing us to view (A,M) as a tree rooted at r.
We focus on static priority policies, a simple yet powerful family of local availability-based policies
widely studied in prior work (see, e.g., [MP17, ADSW25, KAG25]).

Definition 2 (Static priority policy). For each i ∈ A, let ≻i be a strict ordering over a subset
of matches M(i) ⊆ M that contain i. The static priority policy with priority orders (≻i)i∈A is
a policy that, upon the arrival of an agent of type i ∈ A, performs at most one available match
in M(i). The policy chooses the highest priority match according to ≻i whenever one or more
matches inM(i) are available.

First, we revisit the tree priority (TP) policy proposed by [KAG25]. TP is a static priority
policy whereM(i) = {m(i, j)}j∈N (i) includes all matchings that involve i. The priority orders are
defined such that m(i, j) ≻i m(i, P (i)) for all i ∈ A0 and j ∈ C(i). In other words, upon the arrival
of an agent of type i, TP first attempts to match this agent to an agent in the children of i; if no
child node is available, TP then attempts to match this agent to an agent in its parent.

While [KAG25] establishes that the regret of TP is independent of T , their analysis does not
characterize how this regret depends on the network structure or the GPG parameter ϵ. To address
this gap, our contribution here is to provide the first explicit regret bound for TP in the following
theorem, whose proof is presented in Section 4.2.

Theorem 2 (Tree priority). Suppose that G satisfies the GPG condition with ϵ defined as (3), and
the graph (A,M) is acyclic. Then,

Regret(TP, T ) ≤ O

(
rmax ·

n22dr

ϵ

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
)
,

where rmax = maxm∈M+ rm and dr is the depth of the tree (A,M) when rooted at r.

To prove Theorem 2, we construct a generalized quadratic Lyapunov function with a one-step
negative drift by heavily exploiting the hierarchical structure of the tree, where the coefficients
of the Lyapunov function are carefully chosen to capture the propagation of queue imbalances
along different layers of the tree. While our analysis follows a similar proof strategy of [KAG25],
their analysis fails to track the coefficients of the Lyapunov function. We overcome this barrier by
employing much more refined and delicate arguments. We further illustrate in Section B.1 that
the current bound can not be further improved by applying the one-step generalized quadratic
Lyapunov function.

In addition to the regret bound provided in Theorem 2 for all acyclic networks, in Section B.2,
we consider (A,M) to be a path of 4 nodes and show the regret bound of O(ϵ−1) for TP, matching
the Ω(ϵ−1) lower bound by [KAG24]. This new bound improves upon the O(ϵ−2) scaling implied
by Theorem 2 for this specific case, confirming that our Lyapunov analysis for proving Theorem 2
is not tight. However, this tighter bound is achieved via tailored arguments which, as discussed at
the end of Section B.2, do not generalize to arbitrary acyclic networks.
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Next, we propose the truncated tree priority (TTP) policy. TTP is a static priority policy
where, for every i ∈ A, the set of allowable matches is restricted to the children of i, i.e.,M(i) =
{m(i, j)}j∈C(i), with ≻i being an arbitrary order overM(i). In other words, when an agent of type
i arrives, TTP attempts to match it with an available agent in any child node of i, breaking ties
according to ≻i. If no such agent exists, the arriving agent joins queue i. Crucially, TTP never
attempts to match the arriving agent with agents in the parent node of i.

As our main result, we show that TTP is the first static priority policy to achieve the optimal
regret scaling of O(ϵ−1) at all times. This indicates that local availability information is sufficient to
achieve optimal performance in acyclic graphs. The proof of Theorem 3 is presented in Section C.3.5.

Theorem 3 (Truncated tree priority). Suppose G satisfies the GPG condition with parameter ϵ
defined as (3), and the graph (A,M) is acyclic. Then,

Regret(TTP, T ) ≤ O

(
rmax ·

n2d2r
ϵ

)
,

where rmax = maxm∈M+ rm and dr is the depth of the tree (A,M) when rooted at r.

The matching logic of both TP and TTP aligns with the intuition that nodes further from
the under-demanded root are more demanded, thus warranting higher priority for their matches.
The distinction arises when no child nodes are available: TTP strictly forbids the arriving agent
from matching with its parent, forcing it to wait in the queue, whereas TP allows the agent to
match with its parent as a final resort. We illustrate the distinction between TP and TTP by the
following example.

λ1 λ2 λ3 λ4

r1 r2 r3

Figure 2: A path network where A+ = {4} (the root is indicated with a yellow node).

Example 1. When the matching network forms a path as in Figure 2, both TP and TTP prioritize
the match between any node i and its child i−1 over the match between i and its parent i+1. For
arrival sequence (3, 2, 1) (the first arrival is to queue 3, then to queue 2, and then to queue 1), TP
performs match m(2, 3) upon the arrival to queue 2, whereas TTP does not perform this match
but instead performs the match m(1, 2) upon the arrival to queue 1.

Intuitively, by preventing the arriving agent from matching with the parent node, TTP ensures
that existing agent arrivals at a node do not influence the future dynamics of its subtree. This
structural decoupling enables us to leverage a multi-step drift analysis for TTP, overcoming the
limitations of the standard one-step drift analysis that yields suboptimal bounds for TP. Specifi-
cally, we generalize TTP to accommodate fractional arrivals and construct a geometric Lyapunov
function by utilizing two technical ingredients: the Lipschitz continuity of the queue-length process,
and the one-step negative drift under fluid arrivals. By further applying standard concentration
inequalities for the true arrival process, we establish the desired multi-step drift, which yields the
optimal O(ϵ−1) bound for TTP—a result that remains elusive for TP.

4 Analysis

In this section, we formally analyze the policies considered in this paper. We present the proofs of
Theorems 1, 2, and 3 in Sections 4.1, 4.2, and 4.3, respectively.
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To lay the groundwork for these analyses, we first introduce the formal definition of (geometric)
Lyapunov functions.

Definition 3 (Lyapunov function). Let (X(t))t≥0 be a discrete-time Markov chain defined on a
complete metrizable state space X . A function Φ : X → R≥0 is a Lyapunov function with drift-size
parameter γ > 0, drift-time parameter t0 > 0, and exception parameter K if

sup
x∈X :Φ(x)>K

{Ex[Φ(X(t0))]− Φ(x)} ≤ −γ.

A function Φ : X → R≥0 is a geometric Lyapunov function with a geometric drift size 0 < γ < 1,
drift time t0, and exception parameter K if

sup
x∈X :Φ(x)>K

Ex[Φ(X(t0))]

Φ(x)
≤ γ.

Next, we introduce tools for translating queue-length bounds under the steady state to all-time
queue-length bounds. Per Lemma 1, since we are concerned with the all-time regret performance
of matching policies, it is crucial to bound the expected queue lengths at all times. However,
Lyapunov techniques only allow us to bound the expected queue lengths in the steady state. We
show that, for the matching policies satisfying the following consistency property, queue-length
bounds that hold at any time can be directly deduced from the bounds under the steady state.

The consistency property informally posits that, when starting from different initial states
with the same arrival process, the difference between the induced states does not grow over time.
Similar concepts also appear in prior work under the names Lipschitz continuity [MP17] or non-
expansiveness [BB13].

Definition 4 (Consistency). We say that a policy is consistent if for all valid initial states Q(0)
and Q′(0), for every possible arrival at time 1, there exists a coupling µ between Q(1) and Q′(1)
such that

E(Q(1),Q′(1))∼µ

[∥∥Q(1)−Q′(1)
∥∥
1

]
≤
∥∥Q(0)−Q′(0)

∥∥
1
,

where the randomness of Q(1) and Q′(1) comes from the randomness used by the policy.

As a consequence of a policy being consistent, every bound for the expected total queue-length
under the stationary distribution can be directly translated into an all-time bound.

Lemma 2. Let Π be a consistent policy. Suppose that the Markov chain (Q(t))t≥0 is ergodic, and
let π be its stationary distribution. If Eπ[∥Q(0)∥1] ≤ B, then E[∥Q(t)∥1] ≤ 2B for every t ≥ 0.

The proof of Lemma 2 is deferred to Section A.4.1. Moreover, we show in Section A.4 that all
static priority policies and the longest-queue policy are consistent.

4.1 Analysis of probabilistic matching policy

In this subsection, we prove Theorem 1 by largely following a standard analysis for the quadratic
Lyapunov function (see, e.g., the proof of [KAG25, Lemma 5.4]). The global and availability-based
properties of PM come from its description. Moreover, since PM always matches the arriving
agent whenever at least one of its neighboring queues is non-empty, as stated in the following fact,
any two adjacent queues cannot be non-empty at the same time.
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Fact 1. Let (Q(t))t≥0 be the states induced by PM under an arbitrary sample path. Then, for all
t ≥ 0 and m(i, j) ∈M, Qi(t) ·Qj(t) = 0.

Then, we analyze the Markov chain (Q(t))t≥0 by using the following quadratic Lyapunov func-
tion: For t ≥ 0, define

L(t) ≜
∑
i∈A0

(Qi(t))
2.

Fix t ≥ 0, and we upper bound the drift E[L(t+ 1)− L(t) | Q(t)], where the expectation is taken
over the randomness of the arrival process and PM. For each match m ∈ M, let xm denote the
probability that m is performed by PM at time t+1. By standard calculation (see, e.g., [KAG25,
Proposition 5.1]),

E[L(t+ 1)− L(t) | Q(t)] ≤ 2⟨Q(t), λ−Mx⟩+ 1. (4)

Recall by 1 that any two adjacent queues cannot be non-empty at the same time. For each match
m ∈ M that contains types i and j such that i ∈ U+(t) and j ∈ U0(t), m is performed at time
t + 1 if and only if an agent of type j arrives and PM decides to match this agent with an agent
in queue i; it follows that

xm = λj ·
z̃m(t)∑

k∈N (j)∩U+(t) z̃m(k,j)(t)
≥ λj ·

z̃m(t)∑
k∈N (j) z̃m(k,j)(t)

= λj ·
z̃m(t)

(Mz̃(t))j
≥ λj ·

z̃m(t)

λ̃j(t)
= λj ·

z̃m(t)

λj
= z̃m(t),

where the second inequality holds since (z̃(t), s̃(t)) is a feasible solution of SPP(λ̃(t)). Hence, for
each queue i ∈ U+(t),

(Mx)i =
∑

j∈N (i)

xm(i,j) ≥
∑

j∈N (i)

z̃m(i,j)(t) = (Mz̃(t))i = λ̃i(t), (5)

where the last equality holds since (z̃(t), s̃(t)) has the same basic activities as (z∗, s∗), and hence
s̃i(t) = s∗i = 0 (recall that s̃i(t) is the slack variable in the constraint (Mz̃(t))i + s̃i(t) = λ̃i(t) of

SPP(λ̃(t))). Combining (4) and (5), and since Qi(t) = 0 for every i ∈ U0(t), we get

E[L(t+ 1)− L(t) | Q(t)] ≤ 2
∑

i∈U+(t)

Qi(t)(λi − λ̃i(t)) + 1 = −2 ϵ
n
∥Q(t)∥1 + 1. (6)

Next, we apply the negative drift (6) and Lemma 10 to upper bound the expected total queue
length. Fix t ≥ 0. The variation of ∥Q(t)∥2 is bounded by

∥Q(t+ 1)∥2 − ∥Q(t)∥2 ≤ ∥Q(t+ 1)−Q(t)∥2 = ∥∆A(t+ 1)−M∆D(t+ 1)∥2 ≤ 1,

where the last inequality holds since at most one match is performed at time t+1, and the performed
match must involve the arriving agent. Then, we bound the expected decrease of ∥Q(t)∥2, i.e.,
E[∥Q(t+ 1)∥2 − ∥Q(t)∥2 | Q(t)]. When ∥Q(t)∥2 ≥ n/ϵ, we get

E [∥Q(t+ 1)∥2 − ∥Q(t)∥2 | Q(t)] ≤ E

[
∥Q(t+ 1)∥22 − ∥Q(t)∥22

2 ∥Q(t)∥2

∣∣∣∣∣ Q(t)

]

≤ E

[
−2 ϵ

n ∥Q(t)∥1 + 1

2 ∥Q(t)∥2

∣∣∣∣∣ Q(t)

]
≤ − ϵ

2n
,
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where the first inequality holds by x − y ≤ (x2 − y2)/(2y) for x ∈ R and y > 0 [CJK+06, Lemma
3.6], the second inequality holds by (6), and the last inequality holds since ∥Q(t)∥1 ≥ ∥Q(t)∥2.

Now, we apply Lemma 10 on Ψ(t) = ∥Q(t)∥2 with K = 1, η = ϵ/(2n), and B = n/ϵ to get

E [∥Q(t)∥2] = E [∥Ψ(t)∥] ≤ 2 +
n

ϵ
+

1− ϵ
2n

ϵ
n

=
3

2
+

2n

ϵ
≤ 3n

ϵ
,

where the last inequality holds since ϵ ≤ 1 and n ≥ 2. Finally, the all-time regret bound for PM
follows from ∥Q(t)∥1 ≤

√
n ∥Q(t)∥2 and Lemma 1.

4.2 Analysis of tree priority policy on acyclic graphs

In this subsection, we prove Theorem 2, and all the omitted proofs can be found in Section C.2.
For all i, j ∈ A, let d(i, j) be the (unweighted) distance between i and j. For each i ∈ A,

define di ≜ maxj∈T (i) d(i, j) as the depth of the subtree rooted at i. For each i ∈ A, denote

P(i) ≜ {j ∈ A0 | i ∈ T −(j) with d(j, i) ≡ 0 (mod 2)} as the set of over-demanded ancestors of i
whose depth has the same parity with i.

For each i ∈ A, define

ϵi ≜

{
z∗m(i,P (i)), i ∈ A0,

s∗i , i ∈ A+.
(7)

By (3), we have ϵ = mini∈A ϵi, and ϵ ≤ ϵi ≤ 1 for every i ∈ A. The following lemma characterizes
ϵi in terms of λ.

Lemma 3 (Theorem 4.1 in [KAG25]). Suppose that G satisfies the GPG condition, and the graph
(A,M) is acyclic. Then, for every i ∈ A0,

ϵi =
∑

j∈T (i)

(−1)d(i,j)λj .

We then recursively define the coefficients of our Lyapunov function: For every i ∈ A0, let

αi ≜ 1 +
1

ϵi

∑
j∈P(i)

αj (λj − ϵj) . (8)

Note that for every i ∈ {r} ∪ C(r), we have P(i) = ∅ and hence αi = 1. We consider the following
generalized quadratic Lyapunov function: For every t ≥ 0, define

L(t) ≜
∑
i∈A0

αi

(
fi(Q(t))+

)2
, (9)

where for every i ∈ A0 and v ∈ Rn,

fi(v) ≜
∑

j∈T −(i)

(−1)d(i,j)+1vj . (10)

Intuitively, to ensure a one-step negative Lyapunov drift, we need to recursively define the coeffi-
cients such that the positive drift appearing at lower levels of the tree (i.e., the levels further from
the root) is dominated by the negative drift at higher levels.
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Notably, our Lyapunov function recovers the one used in [KAG25] if we do not take the positive
parts. As noted in [KAG25], the coefficients αi’s are intractable when using their Lyapunov func-
tion. As we will show, this modification to the Lyapunov function is crucial for deriving an explicit
upper bound for the queue length. We reiterate that our proof significantly differs from [KAG25]
and relies on a more delicate drift analysis. It is also unclear how to adapt their arguments to give
an explicit queue-length bound even using our Lyapunov function.

The following lemma upper bounds the coefficients αi’s.

Lemma 4. For every i ∈ A0, αi ≤ (1 + ϵ−1)⌊(d(r,i)−1)/2⌋.

In the following proposition, we upper bound the drift E[L(t + 1) − L(t) | Q(t)], where the
expectation is taken over the randomness of the arrival at time t+ 1.

Proposition 2. It holds that

E[L(t+ 1)− L(t) | Q(t)] ≤ − ϵ

2dr−1
∥Q(t)∥1 + n

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
.

Moreover, the Markov chain (Q(t))t≥0 is ergodic.

By Proposition 2, the Markov chain (Q(t))t≥0 is ergodic, and we denote its stationary dis-
tribution as π. By applying Lemma 9 with f(Q(t)) = ϵ

2dr−1 ∥Q(t)∥1, g(Q(t)) = L(t), and c =

n(1 + ϵ−1)⌊(dr−1)/2⌋, the drift bound in Proposition 2 yields

Eπ [∥Q(0)∥1] ≤
n2dr−1

ϵ

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
.

By Proposition 7 and Lemma 2, it follows that, for every t ≥ 0,

E [∥Q(t)∥1] ≤
n2dr

ϵ

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
.

Finally, the regret bound for TP follows from Lemma 1.

4.3 Analysis of truncated tree priority policy on acyclic graphs

In this subsection, we present the proof of Theorem 3, which follows a multi-step drift analysis. All
the omitted proofs in this subsection can be found in Section C.3.

Our primary goal is to construct a geometric Lyapunov function and then apply the following
lemma to derive the desired queue-length bound under the stationary distribution.3

Lemma 5 (Theorem 5 in [GZ06]). Let (X(t))t≥0 be a discrete-time Markov chain defined on a
complete metrizable state space X that possesses a stationary distribution π. Suppose that Φ : X →
R≥0 is a geometric Lyapunov function with parameters γ, t0, and K. Then,

Eπ[Φ(X)] ≤ K

1− γ
· sup
x∈X

Ex[Φ(X(t0))]

Φ(x)
.

We will construct the geometric Lyapunov function by the following proposition, which is a
modified version of [GZ06, Theorem 6].

3Proposition 5 is originally established for continuous-time Markov chains, but its proof also holds for discrete-time
Markov chains.
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Proposition 3. Let (X(t))t≥0 be a discrete-time Markov chain defined on a complete metrizable
state space X . Suppose Φ is a Lyapunov function with δ-truncated drift for δ > 0:

sup
x∈X :Φ(x)>K

Ex [max {−δ,Φ(X(t0))− Φ(x)}] ≤ −γ . (11)

Moreover, suppose that there exists θ > 0 such that

θL3(δ, θ, t0) ≤ γ , (12)

where

L3(δ, θ, t) ≜ sup
x∈X

Ex

[
(max{−δ,Φ(X(t))− Φ(x)})2 exp

(
θ(Φ(X(t))− Φ(x))+

)]
. (13)

Then, exp(θ ·Φ(·)) is a geometric Lyapunov function with geometric drift size parameter 1− γθ/2,
drift time parameter t0 and exception parameter eθK .

To apply Proposition 3, we need a Lyapunov function with two multi-step drift properties: a
negative truncated drift (11) and a bounded second-order exponential moment (12). For our choice
of the Lyapunov function, we use

Φ(Q) ≜
∑
i∈A0

Qi (14)

defined for Q ∈ Rn
≥0.

TTP under fractional arrivals. To establish the multi-step drift properties for Φ, we need to
generalize TTP to accommodate fractional arrivals, enabling us to utilize TTP’s desirable drift
properties under the fluid arrival. Specifically, ∆Ai(t) can take any value in R≥0, and we allow
arrivals at multiple nodes at each period. We also allow performing fractional matches, i.e., ∆Dm(t)
can take any value in R≥0. We generalize TTP to match fractional arrivals as follows. At each
period, we visit the nodes in A in an order such that every node i ∈ A0 is visited before the
parent of i. For the current node i, we match the new arrivals at i to as many agents in C(i) as
possible. Notice that, under the true arrival, this generalized version of TTP behaves identically
as the original TTP. We emphasize that this generalization only serves the purpose of analysis,
and TTP does not perform fractional matches under the true arrival.

The following two propositions serve as the main technical ingredients of our analysis. The first
proposition shows that, for two fractional arrival trajectories, when starting from the same initial
state, the difference between the respective queue-length trajectories induced by TTP is controlled
by the difference between the arrival trajectories.

Proposition 4 (Lipschitz continuity). For two fractional arrival trajectories (A(t))t≥0 and (A′(t))t≥0,
let (q(t))t≥0 and (q′(t))t≥0 be the respective queue-length trajectories induced by TTP with q(0) =
q′(0). Then, for every t ≥ 0,∣∣∣∣∣∣

∑
i∈A0

qi(t)−
∑
i∈A0

q′i(t)

∣∣∣∣∣∣ ≤ 2(dr + 1)
∑
i∈A

max
0≤s≤t

∣∣Ai(s)−A′
i(s)
∣∣ , (15)

where dr is the depth of the tree (A,M) when rooted at r.
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The next proposition asserts that, under the fluid arrival, i.e., Ai(t) = tλi for all i ∈ A and
t ≥ 0, Φ exhibits a negative one-step drift for the queue-length process induced by TTP. We will
use (q(t))t≥0 to denote the queue-length process induced by TTP under the fluid arrival.

Proposition 5 (Negative drift under fluid arrival). Suppose that Ai(t) = tλi for all i ∈ A and
t ≥ 0. Then, under TTP, for every t ≥ 0,

Φ(q(t+ 1)) ≤ (Φ(q(t))− ϵ)+ . (16)

With the above two propositions, we can now show that, under the true arrival, Φ satisfies
the multi-step drift properties required by Proposition 3, yielding the desired geometric Lyapunov
function. Specifically, by the one-step negative drift of Φ under the fluid arrival (Proposition 5), the
total queue length decreases linearly under the fluid arrival (recall that Φ encodes the total queue
length). Since the true arrival process concentrates around the fluid arrival process by standard
concentration inequalities (Lemma 8), the Lipschitz-continuity property (Proposition 4) implies
that the queue-length process under the true arrival also concentrates around the queue-length
process under the fluid arrival. Choosing an appropriate step size then concludes the multi-step
drift properties of Φ under the true arrival. We formalize the above arguments in the following
proposition.

Proposition 6. Let (Q(t))t≥0 be the queue-length process induced by TTP under the true arrival.
Then, there exist universal constants n0, κ0 > 0 such that for any n ≥ n0, any 0 < ϵ < 1, and any

θ ≤ κ0
(dr + 1)2n

, (17)

the function V (Q) ≜ exp(ϵθ · Φ(Q)) for Q ∈ Rn
≥0 is a geometric Lyapunov function for (Q(t))t≥0

with:

• Geometric drift size parameter: 1− 5
2(dr + 1)2nθ,

• Drift time parameter: K ≜ t0ϵ
−2, where t0 ≜ 25(dr + 1)2n,

• Exception parameter: exp(θt0).

Now, we are ready to finish the proof of Theorem 3. We sketch the proof argument here and
defer the complete proof to Section C.3.5.

Proof sketch of Theorem 3. By Proposition 6, under the true arrival, V (Q) = exp(ϵθ · Φ(Q)) is
a geometric Lyapunov function with geometric drift size parameter 1 − 5

2(dr + 1)2nθ, drift time
parameter K = t0ϵ

−2, and exception parameter exp(θt0). By Proposition 5, we get

Eπ

[
eϵθ·Φ(Q)

]
≤ 2eθt0ϕ(K)

5(dr + 1)2nθ
≤ O(1) , (18)

where ϕ(K) ≜ supx∈Rn
≥0

Ex

[
eϵθ(Φ(Q(K))−Φ(x))

]
is the maximum expected overshoot, and the last

inequality is derived by applying Propositions 4 and 5. By Jensen’s inequality,

Eπ[Φ(Q)] ≤ 1

ϵθ
logEπ[e

ϵθ·Φ(Q)] ≤ O

(
nd2r
ϵ

)
, (19)

where the second inequality holds by (18) and the definition of θ.
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Finally, TTP is consistent by Proposition 7, and hence applying Lemma 2 yields

E

∑
i∈A0

Q(t)

 ≤ 2Eπ

∑
i∈A0

Q(0)

 = 2Eπ[Φ(Q)] ≤ O

(
nd2r
ϵ

)
for every t ≥ 0, where the last inequality holds by (19). Combining the above displayed equation
with Lemma 1 concludes the proof.

Remark 1. Our analysis crucially relies on the Lipschitz-continuity property of TTP (Propo-
sition 4). While it is difficult to directly establish drift properties under the true arrival, drift
properties under the fluid arrival appear much more tractable. In addition, the proximity of the
fluid arrival process and the true arrival process can be derived via standard concentration bounds.
Applying the Lipschitz-continuity property then yields multi-step drift properties under the true
arrival. Since our analysis does not require properties of the true arrival process other than it being
well-concentrated, our result for TTP can be potentially extended to arrival processes beyond the
multinomial one, as long as suitable concentration estimates are available.

While the Lipschitz-continuity property might seem natural, establishing it turns out to be
notoriously challenging for most policies, with a notable example being Jackson networks (see, e.g.,
[GZ06, Theorem 1]). A salient feature of TTP is its “feedforward-ness”: an arriving agent is never
matched with its parent, so the current state of any node does not affect the future dynamics in its
subtree. In contrast, by allowing the match between the arriving agent and its parent, TP would
create “feed-back” interactions, which appear to be the main obstacle to establishing its Lipschitz-
continuity property. In fact, for systems with such feed-back interactions, it remains challenging
to establish Lipschitz-continuity properties even for small networks; to the best of our knowledge,
similar properties are known only for very simple networks such as a two-node system [DR00].

5 Numerical experiments

In this section, we conduct numerical experiments to evaluate the performance of the proposed
greedy policies and compare them with benchmark policies from the literature. All simulations are
based on 1000 replications.

We first adopt the examples from [KAG25, Figures 5 and 10] as our first set of instances (see
Figure 3). In Figure 4, we simulate LG, PM, TP, and TTP on these two networks, and the
experiments suggest that there is no clear hierarchy between policies, i.e., there are instances,
where PM and LQ are dominated both by TP and TTP (as shown in Figure 4a), and vice versa
(as shown in Figure 4b). Nevertheless, the performance gap between all policies are remarkably
small.

In Figure 5, we consider a cyclic network, and simulate the performance of PM and LG on
this cyclic network, given that both TP and TTP requires the network to be acyclic. We observe
that both policies perform very close to each other numerically, which is aligned with the fact that
both policies achieve the optimal regret scaling of O(ϵ−1).4

6 Conclusion

In this paper, we considered two-way dynamic matching and comprehensively studied availability-
based policies, whose matching decisions depend only on agent availability across types, instead of

4We observe similar numerical performance between PM and LQ when the network structure exhibits more
complexity, i.e., paths originating from cycle nodes.
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λ1 = λ λ2 = 2λ λ3 = 4λ λ4 = 6λ λ5 = 8λ λ6 = 7λ
r1 = 10 r2 = 5 r3 = 3 r4 = 2 r5 = 1

(a) ϵ = λ = 1/28 and A+ = {6} ([KAG25, Figure 5]).

λ1 = λ λ2 = 2λ λ3 = 3λ λ4 = 4λ λ5 = 2.1λ
r1 = 1 r2 = 2 r3 = 3 r4 = 2

(b) λ ≈ 0.08, ϵ = 0.1λ, and A+ = {5} (Figure 10 from [KAG25, Figure 10])

Figure 3: Two example matching networks satisfying the GPG condition.

(a) Policy comparisons on the network in Figure 3a (b) Policy comparisons on the network in Figure 3b

Figure 4: Regret comparison of the tree priority (TP), the truncated tree priority (TTP), the longest-queue (LQ),
and the randomized greedy (PM) policies.

utilizing complete queue-length information. We first proposed a global availability-based policy
PM for general networks and a local availability-based policy TTP for acyclic networks, with both
policies achieving the optimal regret scaling. It remains an exciting open problem to find a local
availability-based policy that achieves the optimal regret scaling for general networks.

We also provided the first explicit regret bound for the local availability-based policy TP pro-
posed by [KAG25]. Numerical outcomes suggest TP exhibits the optimal regret scaling, and we
additionally show the optimal regret scaling of TP for a path of 4 nodes via tailored arguments,
indicating that our Lyapunov analysis for TP is not tight. With the above evidences, we conjecture
that TP exhibits the optimal regret scaling, and we believe the resolution of this conjecture would
lead to novel insights and techniques.

Our numerical experiments show that there are instances where PM and LQ are dominated
both by TP and TTP, and vice versa. Nevertheless, the performance gaps between all policies are
remarkably small. Notably, we have not been able to construct an instance in which TTP achieves
strictly better regret than TP, and therefore we reiterate the conjecture that TP also achieves the
optimal regret scaling of O(ϵ−1) (see [KAG25, Example 6.1]).

For multi-way matching networks where each match can include more than two agent types,
both the primal-dual policy of [WXY23] and the sum-of-square policy of [Gup24] achieve the
optimal regret scaling. Nevertheless, both policies are global and queue-length-based, and it would
be intriguing to achieve the optimal regret scaling for multi-way dynamic matching via (local)
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λ1 = 0.165

λ2 = 0.09
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5

Figure 5: (LEFT) A cyclic two-way matching network that satisfies the GPG condition, where z∗ =
{0.085, 0.05, 0.32, 0.01, 0.08} and ϵ = 0.01. (RIGHT) Regret comparison of the longest-queue (LQ) and the proba-
bilistic matching (PM) policies

availability-based policies.
While our work establishes strong theoretical guarantees for availability-based policies, an im-

portant future direction is to formalize their practical benefits of transparency and resistance against
manipulation. Combining our results with the literature on strategic behaviors in queueing sys-
tems (e.g., [ERIZ25]) could help demonstrate how availability-based policies provide robustness in
strategic environments under precise game-theoretic assumptions.
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[KAG25] Süleyman Kerimov, Itai Ashlagi, and Itai Gurvich. On the optimality of greedy
policies in dynamic matching. Operations Research, 73(1):560–582, 2025.

[Kan21] Yash Kanoria. Dynamic spatial matching. arXiv preprint arXiv:2105.07329, 2021.

[KSSW22] Kristen Kessel, Ali Shameli, Amin Saberi, and David Wajc. The stationary prophet
inequality problem. In Proceedings of the 23rd ACM Conference on Economics and
Computation, pages 243–244, 2022.

23



[LVY26] Yingxi Li, Ellen Vitercik, and Mingwei Yang. Smoothed analysis of online metric
matching with a single sample: Beyond metric distortion. In ITCS, volume 362 of
LIPIcs, pages 94:1–94:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2026.

[LXK+11] Yi Lu, Qi Xie, Gabriel Kliot, Alan Geller, James R. Larus, and Albert Greenberg.
Join-idle-queue: A novel load balancing algorithm for dynamically scalable web ser-
vices. Performance Evaluation, 68(11):1056–1071, 2011.

[MC89] Nimrod Megiddo and Ramaswamy Chandrasekaran. On the ε-perturbation method
for avoiding degeneracy. Operations Research Letters, 8(6):305–308, 1989.

[Mit01] Michael Mitzenmacher. The power of two choices in randomized load balancing.
IEEE Transactions on Parallel and Distributed Systems, 12(10):1094–1104, 2001.

[MM16] Jean Mairesse and Pascal Moyal. Stability of the stochastic matching model. Journal
of Applied Probability, 53(4):1064–1077, 2016.

[MP17] Pascal Moyal and Ohad Perry. On the instability of matching queues. 2017.
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A Preliminaries

A.1 Martingale and concentration inequalities

Lemma 6 (Doob’s L2 maximal inequality). Let X1, . . . , XT be a discrete-time submartingale.
Then,

E

[
sup

0≤s≤T
|Xs|2

]
≤ 4E

[
|XT |2

]
.

Lemma 7 (McDiarmid’s Inequality). Let X1, . . . , Xn ∈ X be independent random variables. Sup-
pose that function f : X n → R satisfies the bounded differences property with bounds c1, . . . , cn: For
all i ∈ [n] and x ∈ X n,

sup
x′
i∈X
|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)| ≤ ci.

Then, for any δ > 0,

P (|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| ≥ δ) ≤ 2 exp

(
− 2δ2∑n

i=1 c
2
i

)
.

Lemma 8. Let (X(k))k≥1 be i.i.d. n-dimensional random vectors with a categorical distribution
with parameters λ, i.e., P(X(1) = ei) = λi, where

∑n
i=1 λi = 1 and 0 < λi < 1 for i ∈ [n]. For any

T ≥ 1, define

Z(T ) ≜
1√
T

n∑
i=1

max
1≤t≤T

∣∣∣∣∣
t∑

k=1

Xi(k)− λit

∣∣∣∣∣ .
Then, for all ξ > 0, there exist constants C1, C2(ξ), C3(ξ) <∞ such that

sup
T≥1

E [Z(T )] ≤ C1 ≜ 2
√
n , (20)

sup
T≥1

E [exp (ξZ(T ))] ≤ C2(ξ) ≜ exp
(
2
√
nξ + σ2ξ2

)
, (21)

sup
T≥1

E
[
(Z(T ))2 · exp (ξZ(T ))

]
≤ C3(ξ) ≜ 4e−2n · C2

(
ξ +

1√
n

)
, (22)

where σ > 0 is an absolute constant.

Proof. We prove (20), (21) and (22) sequentially.

Proof of (20) For any t ≥ 1 and i ∈ [n], let

Yi(t) ≜
t∑

k=1

Xi(k)− λit ,

then the process {Yi(t)}t≥0 is a martingale with increments ∆Yi(k) = Xi(k)− λi. For each T ≥ 1,
define the coordinate-wise maximum

Mi(T ) ≜ max
0≤t≤T

|Yi(t)|
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and then Z(T ) = T−1/2
∑n

i=1Mi(T ).
By Lemma 6, we have

E[Mi(T )
2] ≤ 4E[Yi(T )2] = 4Var(Yi(T )) = 4Tλi(1− λi).

By Jensen’s inequality, we obtain

E[Mi(T )] ≤
√
4Tλi(1− λi) ≤ 2

√
T
√
λi.

Then, we have

E [Z(T )] = T−1/2E

[
n∑

i=1

Mi(T )

]
≤ 2

n∑
i=1

√
λi ≤ 2

√
n ,

where the second inequality holds because
∑

λi = 1, λi ≥ 0, and by Cauchy-Schwarz,
∑n

i=1

√
λi is

maximized when λi = 1/n for all i ∈ [n].

Proof of (21) We analyze Z(T ) as a function of the T independent random vectors. Define the
function f : ({e1, . . . , en})T → R by

f(x(1), . . . , x(T )) =
1√
T

n∑
i=1

max
1≤t≤T

∣∣∣∣∣
t∑

k=1

xi(k)− λit

∣∣∣∣∣ ,
where xi(k) denotes the i-th component of the vector x(k). Note that Z(T ) = f(X(1), . . . , X(T )).

We check the bounded difference condition required by Lemma 7. Consider two sequences of
vectors x = (x(1), . . . , x(T )) and x′ = (x′(1), . . . , x′(T )) that differ only at a single index ℓ ∈ [T ].
Since the vectors are canonical basis vectors, let x(ℓ) = eu and x′(ℓ) = ev for some distinct u, v ∈ [n].
Let ri(t) ≜

∑t
k=1 xi(k) and r′i(t) ≜

∑t
k=1 x

′
i(k) denote the partial sums for the two sequences. The

change at index ℓ affects the partial sums only for t ≥ ℓ. Specifically:

• The u-th coordinate decreases by 1: r′u(t) = ru(t)− 1 for all t ≥ ℓ.

• The v-th coordinate increases by 1: r′v(t) = rv(t) + 1 for all t ≥ ℓ.

• All other coordinates i /∈ {u, v} remain unchanged: r′i(t) = ri(t) for all t.

Applying this to the u-th component term in f :∣∣∣∣ max
1≤t≤T

|ru(t)− λut| − max
1≤t≤T

|r′u(t)− λut|
∣∣∣∣ ≤ max

ℓ≤t≤T
|ru(t)− r′u(t)| = 1 .

Similarly, ∣∣∣∣ max
1≤t≤T

|rv(t)− λvt| − max
1≤t≤T

|r′v(t)− λvt|
∣∣∣∣ ≤ 1 .

The terms for i /∈ {u, v} do not change. Therefore, the total change in the function value is bounded
by:

|f(x)− f(x′)| ≤ 1√
T

n∑
i=1

∣∣∣max
t
|ri(t)− λit| −max

t
|r′i(t)− λit|

∣∣∣ ≤ 1√
T
(1 + 1) =

2√
T
.
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Thus, f satisfies the bounded difference condition with constants ck = 2/
√
T for each k ∈ [T ]. The

sum of squared constants is:
T∑

k=1

c2k =
T∑

k=1

4

T
= 4 .

By Lemma 7, for any δ > 0:

P (|Z(T )− E[Z(T )]| ≥ δ) ≤ 2 exp

(
− 2δ2∑T

k=1 c
2
k

)
= 2 exp

(
−δ2

2

)
.

Applying [Ver18, Proposition 2.6.1], which relates several equivalent sub-Gaussian properties, to
the random variable Z(T )−E[Z(T )], we get that there exists an absolute constant σ > 0 such that

E
[
eδ(Z(T )−E[Z(T )])

]
≤ eσ

2δ2 , ∀δ ∈ R. (23)

Then, it follows that

sup
T≥1

E
[
eξZ(T )

]
≤ sup

T≥1
eξE[Z(T )] · E

[
eξ(Z(T )−E[Z(T )])

]
≤ exp

(
2
√
nξ + σ2ξ2

)
,

where the second inequality follows from (20) and (23), concluding C2(ξ) = exp(2
√
nξ + σ2ξ2).

Proof of (22) We use the inequality x2 ≤ 4e−2

α2 eαx, valid for all x ≥ 0, α > 0. Applying this with
x = Z(T ) and choosing α = 1/

√
n:

(Z(T ))2eξZ(T ) ≤ 4e−2

(1/
√
n)2

eZ(T )/
√
neξZ(T ) = 4e−2ne(ξ+1/

√
n)Z(T ) .

Taking expectations and applying (21) with parameter ξ + 1/
√
n:

E
[
(Z(T ))2eξZ(T )

]
≤ 4e−2nE

[
e(ξ+1/

√
n)Z(T )

]
≤ 4e−2nC2(ξ + 1/

√
n) .

Hence, it follows that C3(ξ) = 4e−2nC2(ξ + 1/
√
n).

A.2 Lyapunov function analysis

In this subsection, we review standard tools on Lyapunov function analysis, which is one of the
prevalent approaches to bound the expected value of some function with respect to the steady state
of a Markov chain.

The following lemma bounds the expected value of a function f(·) when the drift of the Lyapunov
function depends also on f(·).

Lemma 9 (Corollary 4 in [GZ08]). Let X = (X(t))t≥0 be a discrete-time Markov chain on a
discrete state space X with transition kernel P , and suppose f : X → R≥0. If there exists a
function Φ : X → R≥0 and a constant c for which∫

X
P (x, dy)Φ(y)− Φ(x) ≤ −f(x) + c, ∀x ∈ X ,

then ∫
X
π(dx)f(x) ≤ c

for every stationary distribution π of X.
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We will also apply the following lemma, which directly bounds the expectation of the Lyapunov
function at all times instead of only under the stationary distribution.

Lemma 10 (Lemma 5 in [WXY23]). Let Ψ(t) be an {Ft}-adapted discrete-time stochastic process
satisfying:

• Bounded variation: |Ψ(t+ 1)−Ψ(t)| ≤ K;

• Expected decrease: E[Ψ(t+ 1)−Ψ(t) | Ft] ≤ −η, when Ψ(t) ≥ B;

• Ψ(0) ≤ K +B.

Then, for every t ≥ 0, we have

E[Ψ(t)] ≤ K

(
1 +

⌈
B

K

⌉)
+K

(
K − η

2η

)
.

A.3 Markov chain

The following lemma introduces a generic way of establishing the ergodicity of Markov chains.

Lemma 11 (Corollary 8.7 in [Rob03]). Let (X(t))t≥0 be a discrete-time, homogeneous, irreducible
and aperiodic Markov chain on a countable state space X . If there exist a function f : X → R+

and constants K, η > 0 such that

(i) Ex[f(X(1))− f(x)] ≤ −η when f(x) > K,

(ii) Ex[f(X(1))] <∞ when f(x) ≤ K, and

(iii) the set {x ∈ X | f(x) ≤ K} is finite,

then the Markov chain (X(t))t≥0 is ergodic.

A.4 Consistent policy

In this subsection, we investigate the consistency property (Definition 4) of existing policies. Recall
that [MP17, Lemma 4] establish consistency for certain static priority policies5 when no agents are
discarded. Also, [KAG25, Lemma 5.3] claim that all (deterministic) policies that perform some
match whenever possible are consistent, which is not accurate as we will demonstrate. Then, we
show that all static priority policies and the longest-queue policy are consistent.

We start with an example to refute [KAG25, Lemma 5.3].

Example 2. Assume that n is sufficiently large and the graph (A,M) forms a path such that
for every i ∈ [n − 1], there is a match in M containing types i and i + 1. To describe a policy
that performs some match whenever possible, it suffices to specify, under a state q where any two
adjacent queues are not both non-empty, which match to perform when an agent of type i > 1
arrives with queues i − 1 and i + 1 being non-empty at the same time. In this case, our policy
Π decides the match as follows: If q1 = 0, then Π performs the match m(i − 1, i); otherwise, Π
performs the match m(i, i+ 1). In other words, when queue 1 is empty, Π prioritizes matching to
the queue with a smaller index; otherwise, Π prioritizes matching to the queue with a larger index.

5They consider the static priority policies that perform a match whenever possible and select matches according
to a fixed priority order over all matches.
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Next, we give the initial states and specify the arrival sequence. Let Q(0) = 0 and Q′(0) =
(1, 0, . . . , 0). The first four arriving agents are of types 3, 5, 4, 6, respectively. During the first
four periods, Π will perform m(3, 4) and m(5, 6) under Q, and perform m(4, 5) under Q′. Hence,
∥Q(4)∥1 = 0 and ∥Q′(4)∥1 = 3, which implies∥∥Q(4)−Q′(4)

∥∥
1
= 3 > 1 =

∥∥Q(0)−Q′(0)
∥∥
1
.

Therefore, Π is not consistent.

We remark that, in the above example, one can repeat the arrival pattern to make the distance
between Q(t) and Q′(t) arbitrarily large as t increases. That is, the next four arriving agents are
of types respectively 8, 10, 9, 11, and so on.

Recall that the longest-queue policy adopts the following matching rule: When the arriving
agent has multiple non-empty neighboring queues, select the one with the largest length to match
to, with ties broken according to a fixed order.6 [KAG25] show that the longest-queue policy
achieves the optimal regret scaling for general networks. Next, we show that all static priority
policies and the longest-queue policy are consistent.

Proposition 7. All static priority policies and the longest-queue policy are consistent.

Proof. We first show that any static priority policy is consistent. Let Q(0) and Q′(0) be two valid
initial states, and let Q(1) and Q′(1) be the corresponding states induced by a static priority policy
Π after one-step transition. Suppose that an agent in queue i arrives at time 1.

• If the arriving agent is not matched under both Q(0) and Q′(0), or is matched to an agent in
the same queue under both Q(0) and Q′(0), then Q(1)−Q′(1) = Q(0)−Q′(0), implying∥∥Q(1)−Q′(1)

∥∥
1
=
∥∥Q(0)−Q′(0)

∥∥
1
.

• If the arriving agent is matched to an agent in queue j under Q(0) and is not matched under
Q′(0), then Q(1) = Q(0)− ej and Q′(1) = Q′(0) + 1{i∈A0} · ei, and we must have Qj(0) > 0
and Q′

j(0) = 0. As a result,∥∥Q(1)−Q′(1)
∥∥
1
=
∥∥Q(0)− ej −Q′(0)− 1{i∈A0} · ei

∥∥
1
≤
∥∥Q(0)−Q′(0)

∥∥
1
,

where the inequality holds since |Qi(0)−Q′
i(0)− 1{i∈A0}| ≤ |Qi(0)−Q′

i(0)|+1 and |Qj(0)−
Q′

j(0) − 1| = |Qj(0) − Q′
j(0)| − 1 given that Qj(0) > 0 and Q′

j(0) = 0. The case where
the arriving agent is not matched under Q(0) and is matched under Q′(0) can be handle
analogously.

• Suppose that the arriving agent is match to an agent in queue j under Q(0) and is matched
to an agent in queue k under Q′(0) with j ̸= k, then Q(1) = Q(0)−ej and Q′(1) = Q′(0)−ek.
Assume by symmetry that m(i, j) ≻i m(i, k), then we must have Qj(0) > 0 and Q′

j(0) = 0.
As a result, ∥∥Q(1)−Q′(1)

∥∥
1
=
∥∥Q(0)− ej −Q′(0) + ek

∥∥
1
≤
∥∥Q(0)−Q′(0)

∥∥
1
,

where the inequality holds since |Qk(0) − Q′
k(0) + 1| ≤ |Qk(0) − Q′

k(0)| + 1 and |Qj(0) −
Q′

j(0)− 1| = |Qj(0)−Q′
j(0)| − 1 given that Qj(0) > 0 and Q′

j(0) = 0.

6In [KAG25], when there are multiple longest neighboring queues, the longest-queue policy breaks ties arbitrarily.
However, breaking ties arbitrarily may render the longest-queue policy inconsistent. To illustrate, under two different
states with identical sets of longest neighboring queues, if the policy breaks ties differently, then consistency would
be violated.
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Combining all the above concludes that Π is consistent.
We now turn to the longest-queue policy, whose proof follows a similar argument. In particular,

the analysis on the first two cases proceeds identically, and we conclude the consistency of the
longest-queue policy by analyzing the last case.

• Suppose that the arriving agent is match to an agent in queue j under Q(0) and is matched
to an agent in queue k under Q′(0) with j ̸= k, then Q(1) = Q(0)−ej and Q′(1) = Q′(0)−ek.
By the matching rule of the longest-queue policy,

Qj(0) ≥ Qk(0) and Q′
j(0) ≤ Q′

k(0); (24)

moreover, one of the inequalities must be strict since the longest-queue policy breaks ties
according to a fixed order. Notice that either Qj(0) > Q′

j(0) or Q
′
k(0) > Qk(0), as otherwise,

Q′
j(0) ≤ Q′

k(0) ≤ Qk(0) ≤ Qj(0) ≤ Q′
j(0),

where the first and the third inequalities hold by (24), contradicting the fact that at least one
inequality in (24) is strict. Assume by symmetry that Qj(0) > Q′

j(0), and it follows that∥∥Q(1)−Q′(1)
∥∥
1
=
∥∥Q(0)− ej −Q′(0) + ek

∥∥
1
≤
∥∥Q(0)−Q′(0)

∥∥
1
,

where the inequality holds since |Qk(0) − Q′
k(0) + 1| ≤ |Qk(0) − Q′

k(0)| + 1 and |Qj(0) −
Q′

j(0)− 1| = |Qj(0)−Q′
j(0)| − 1 given that Qj(0) > Q′

j(0).

A.4.1 Proof of Lemma 2

Recall that (Q(t))t≥0 are the states induced by Π starting from Q(0) = 0. Let (Q′(t))t≥0 be the
states induced by Π when we start from Q′(0) ∼ π. Fix t ≥ 0. Since Π is consistent, by induction,
there exists a coupling µ between Q(t) and Q′(t) such that

E(Q(t),Q′(t))∼µ

[∥∥Q(t)−Q′(t)
∥∥
1

]
≤ E

[∥∥Q(0)−Q′(0)
∥∥
1

]
.

Hence,

E [∥Q(t)∥1]− E
[∥∥Q′(t)

∥∥
1

]
= E(Q(t),Q′(t))∼µ

[
∥Q(t)∥1 −

∥∥Q′(t)
∥∥
1

]
≤ E(Q(t),Q′(t))∼µ

[∥∥Q(t)−Q′(t)
∥∥
1

]
≤ E

[∥∥Q(0)−Q′(0)
∥∥
1

]
= E

[∥∥Q′(0)
∥∥
1

]
.

Therefore,

E [∥Q(t)∥1] ≤ E
[∥∥Q′(t)

∥∥
1

]
+ E

[∥∥Q′(0)
∥∥
1

]
= 2E

[∥∥Q′(0)
∥∥
1

]
≤ 2B,

where the equality holds since both Q′(0) and Q′(t) follow the stationary distribution π.

30



B Discussion on tree priority policy on acyclic graphs

In this section, we discuss the possibility of improving the regret bound in Theorem 2 for TP on
acyclic graphs. In Section B.1, we analyze the all-time regret of TP on a path of at most 4 nodes to
demonstrate the barrier of directly improving the proof of Theorem 2. In Section B.2, we leverage
an alternative approach to derive optimal all-time regret for TP on a path of 4 nodes, indicating
that our Lyapunov analysis for Theorem 2 is not tight.

Since TP always matches the arriving agent whenever it has a non-empty neighboring queue,
as stated in the following fact, any two adjacent queues cannot be non-empty at the same time.

Fact 2. Let (Q(t))t≥0 be the states induced by TP under an arbitrary sample path. Then, for all
t ≥ 0 and m(i, j) ∈M, Qi(t) ·Qj(t) = 0.

Let Aodd ⊆ A be the set of nodes with an odd depth, and let Aeven ≜ A \ Aodd be the set of
nodes with an even depth. We first show in the following lemma that truncating a subset of queues
with an even (resp. old) depth would not decrease the length of each queue with an odd (resp.
even) depth and would not increase the length of each other queue with an even (resp. odd) depth.

Lemma 12. Suppose that (A,M) is acyclic, and consider a static priority policy. For A′ ⊆ Aeven

(resp. A′ ⊆ Aodd), let (Q(t))t≥0 be the states of the original system S, and let (Q′(t))t≥0 be the
states of a new system S ′ where each queue i ∈ A′ is truncated. If both systems have the same arrival
process, then for all sample path and t ≥ 0, Qi(t) ≤ Q′

i(t) for every i ∈ Aodd (resp. i ∈ Aeven), and
Qi(t) ≥ Q′

i(t) for every i ∈ Aeven (resp. i ∈ Aodd).

Proof. We only prove the statement for truncating even-depth queues, and the statement for trun-
cating odd-depth queues can be established analogously. The statement is true for t = 0 since
Qi(0) = Q′

i(0) for every i ∈ A. Assume for induction that the statement is true for time t ≥ 0,
and we show that it is also true for time t+ 1 by inspecting the queues that are updated in either
systems. Let i be the queue that the arriving agent at time t+1 belongs to, and let N ′ ⊆ N (i) be
the set of neighbors j of i such that m(i, j) ∈ M(i). Note that the depth of each node in N ′ and
the depth of i have different parities.

• If i ∈ Aodd, and no match is performed in S, then Qj(t) = 0 for every j ∈ N ′. By the
inductive hypothesis, Q′

j(t) ≤ Qj(t) = 0 for every j ∈ N ′, and hence no match is performed
in S ′. Consequently, Qi(t+ 1) = Qi(t) + 1 ≤ Q′

i(t) + 1 = Q′
i(t+ 1).

• Suppose that i ∈ Aodd, and a match m(i, j) is performed in S for some j ∈ N . Firstly,
if no match is performed in S ′, which implies Q′

j(t + 1) = Q′
j(t) = 0, then Qi(t + 1) =

Qi(t) ≤ Q′
i(t) = Q′

i(t + 1) − 1, and Qj(t + 1) ≥ 0 = Q′
j(t + 1). Moreover, if a match

m(i, j) is performed in S ′, then Qi(t + 1) = Qi(t) ≤ Q′
i(t) = Q′

i(t + 1), and Qj(t + 1) =
Qj(t) − 1 ≥ Q′

j(t) − 1 = Q′
j(t + 1). Finally, if a match m(i, k) is performed in S ′ for some

k ∈ N ′ \ {j}, we must have m(i, j) ≻i m(i, k) and Q′
j(t+1) = Q′

j(t) = 0 since Qk(t) ≥ Q′
k(t);

it follows that Qi(t + 1) = Qi(t) ≤ Q′
i(t) = Q′

i(t + 1), Qj(t + 1) ≥ 0 = Q′
j(t + 1), and

Qk(t+ 1) = Qk(t) ≥ Q′
k(t) ≥ Q′

k(t+ 1).

• If i ∈ Aeven, and no match is performed in S ′, then we must have Qj(t) ≤ Q′
j(t) = 0 for every

j ∈ N ′ by the inductive hypothesis, which implies that no match is performed in S. Hence,
Qi(t+ 1) = Qi(t) + 1 ≥ Q′

i(t) + 1 ≥ Q′
i(t+ 1).

• Suppose that i ∈ Aeven, and a match m(i, j) is performed in S ′ for some j ∈ N ′. Firstly, if no
match is performed in S, which impliesQj(t+1) = Qj(t) = 0, thenQ′

i(t+1) = Q′
i(t) ≤ Qi(t) ≤
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Qi(t+1), and Q′
j(t+1) ≥ 0 = Qj(t+1). Moreover, if a match m(i, j) is performed in S, then

Q′
i(t+1) = Q′

i(t) ≤ Qi(t) = Qi(t+1), andQ′
j(t+1) = Q′

j(t)−1 ≥ Qj(t)−1 = Qj(t+1). Finally,
if a match m(i, k) is performed in S for some k ∈ N ′\{j}, we must have m(i, j) ≻i m(i, k) and
Qj(t+1) = Qj(t) = 0 sinceQ′

k(t) ≥ Qk(t); it follows thatQ
′
i(t+1) = Q′

i(t) ≤ Qi(t) = Qi(t+1),
Qj(t+ 1) ≥ 0 = Q′

j(t+ 1), and Q′
k(t+ 1) = Q′

k(t) ≥ Qk(t) = Q′
k(t+ 1) + 1.

Therefore, the statement holds for time t+ 1, which completes the proof.

B.1 Tightness of regret analysis on paths

In this subsection, we assume (A,M) forms a path with at least four nodes, and we show how to
bound the expected queue lengths for the three nodes farthest away from the root. Combining with
Lemma 1, this implies a regret upper bound consistent with Theorem 2 when the path consists of at
most four nodes. In particular, we will iteratively bound the queue lengths in a bottom-up manner
starting from the leaf node, and our analysis clearly illustrates the necessity of the dependence on
network depth in the regret bound achieved by our current approach.

Let A = {1, 2, · · · , n} and M = {1, 2, · · · , n − 1}, where j ∈ M denote the match of between
j and j + 1. Here, we consider the case when n is the under-demanded node with s∗n > 0 and
A+ = {n}. Then, the root of (A,M) is node n by construction. We illustrate the constructed
matching network in Figure 6.

λ1 λ2 λ3 λn−1 λn

r1 r2 . . .
rn−1

Figure 6: A path network where A+ = {n}.

Note that underTP, the priority orders (≻i)i∈[n] is unique: for all i ∈ {2, . . . , n−1},m(i−1, i) ≻i

m(i, i+ 1). We introduce the following family of (artificial) systems {Si}1≤i<n, where we truncate
queues i+ 1, . . . , n in Si, and construct a coupling with our original system such that each system
is equipped with the same arrival process as in the original system. Under Si, denote the number
of agents of type j in the queue at the end of time t by Qi

j(t) for 1 ≤ j ≤ n. Note that for all t ≥ 0
and 1 ≤ j ≤ i, we have

Qi
j(t) = Aj(t)−Di

j−1(t)1{j>1} −Di
j(t)1{j<n} , (25)

where for any 1 ≤ j ≤ n − 1, Di
j(t) denotes the number of matches of m(j, j + 1) performed up

to and including time t in Si, and we set Di
0(t) = Di

n(t) = 0. In particular, by the property of Si,
Qi

j(t) = 0 for any j ∈ {i+ 1, . . . , n}.
The following corollary, as a direct consequence of Lemma 12, characterizes an alternating

pattern in queue-length comparisons between each Si and the original system under TP.

Corollary 1. Under TP, for any t ≥ 0 and 1 ≤ i < n, if i is odd, then

Qi
2m(t) ≤ Q2m(t) , Qi

2m+1(t) ≥ Q2m+1(t) , ∀0 ≤ 2m ≤ i− 1 ; (26)

if i is even, then

Qi
2m(t) ≥ Q2m(t), Qi

2m+1(t) ≤ Q2m+1(t) , ∀0 ≤ 2m ≤ i . (27)

Proof. For i = n− 1, the statement follows directly from Lemma 12. For i ∈ {1, . . . , n− 2}, since
m(i, i + 1) ≻i m(i + 1, i + 2), provided that queue i + 1 is truncated, whether truncating queues
i+2, . . . , n or not does not affect the lengths of queues 1, . . . , i. Hence, we can apply Lemma 12 to
the system where only queue i+ 1 is truncated to conclude the statement.
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Our goal is to use the coupling between our original system and Si’s to characterize the queue-
lengths under TP. We also note that this coupling ensures the processes we are going to analyze
to be Markovian; e.g., the process (Q1(t))t≥0 itself is not a Markov chain, since the transition
probabilities depend on the state of queue 2, whereas (Q1

1(t))t≥0 is a Markov chain. In general, by
the construction of the artificial systems, (Qi(t))t≥0 is a Markov chain for all 1 ≤ i < n.

We then introduce the following lemma that characterizes the optimal solution of the static
planning problem SPP(λ).

Lemma 13 (Theorem 4.1 in [KAG25]). For any 1 ≤ i < n, z∗i + z∗i−11{i≥2} = λi.

Following Lemma 13, we get z∗1 = λ1, z
∗
2 = λ2 − λ1, and z∗3 = λ3 − z∗2 = λ3 − λ2 + λ1, and

note that z∗1 , z
∗
2 , z

∗
3 ≥ ϵ, which will be useful to prove the following results. Next, we discuss the

intuition behind the construction of our Lyapunov functions. In S1, we only need to focus on the
length of queue 1, and we naturally adopt the quadratic Lyapunov function L(t) ≜ (Q1(t))

2. When
it comes to S2, to achieve all-time constant regret via Lemma 1, we should have D1(t) ≈ A1(t) and
D2(t) ≈ A2(t)−A1(t). This implies that ideally we want both

A1(t)−D1(t) = Q1(t) and A2(t)−A1(t)−D2(t) = Q2(t)−Q1(t)

to be small. Hence, a natural choice of the Lyapunov function would be L(t) ≜ β(Q1(t))
2+(Q2(t)−

Q1(t))
2 for appropriately chosen coefficient β ≥ 0. However, we always have Q1(t) ·Q2(t) = 0 by 2,

implying that we can safely drop the first term in L(t), giving rise to our final choice of the Lyapunov
function for S2. Similar derivations also lead to our construction of the Lyapunov function for S3,
which will become clear momentarily.

In the following two lemmas, we show that E[Q1(t)] and E[Q2(t)] can be bounded by O(ϵ−1) at
all times respectively.

Lemma 14. E[Q1(t)] ≤ ϵ−1 for all t ≥ 0 under TP.

Proof. Consider the Lyapunov function L(t) ≜ (Q1
1(t))

2. Conditioned on L(t) > 0, when an agent
of type 1 arrives, we have Q1

1(t + 1) = Q1
1(t) + 1; when an agent of type 2 arrives, match 1 is

performed under TP and Q1
1(t+ 1) = Q1

1(t)− 1. Thus, for all t ≥ 0, we have

E[L(t+ 1)− L(t) | Q1(t),L(t) > 0] = E[(Q1
1(t+ 1) +Q1

1(t))(Q
1
1(t+ 1)−Q1

1(t)) | Q1(t),L(t) > 0]

≤ −2Q1
1(t)(λ2 − λ1) + 1,

where λ2 − λ1 = z∗2 ≥ ϵ. Per Lemma 11, the Markov chain (Q1
1(t))t≥0 is ergodic, and we denote its

stationary distribution by π. Then by Lemma 9, we have

Eπ[Q
1
1(0)] ≤

1

2(λ2 − λ1)
≤ 1

2ϵ
.

Per Lemma 2 and Proposition 7, we have E[Q1
1(t)] ≤ ϵ−1 for all t ≥ 0. Finally, it follows from 1

that E[Q1(t)] ≤ ϵ−1 for all t ≥ 0, since Q1(t) ≤ Q1
1(t) for all t ≥ 0.

Lemma 15. E[Q2(t)] ≤ 2ϵ−1 for all t > 0 under TP.

Proof. Consider the Lyapunov function L(t) ≜ (Q2
2(t)−Q2

1(t))
2. Conditioned on L(t) > 0, we can

either have Q2
1(t) > 0 or Q2

2(t) > 0 by 2.

Claim 1. For all t ≥ 0 and i = 1, 2, we have

E
[
(L(t+ 1)− L(t) | Q2(t),L(t) > 0, Q2

i (t) > 0
]
≤ −2ϵQ2

i (t) + 1. (28)
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The proof of Claim 1 is deferred to Appendix B.1.1. Using Claim 1, we have

E[(L(t+ 1)− L(t) | Q2(t),L(t) > 0] ≤ −(2ϵQ2
1(t) + 1) · 1{Q2

1(t)>0} − (2ϵQ2
2(t) + 1) · 1{Q2

2(t)>0}
≤ −2ϵ|Q2

2(t)−Q2
1(t)|+ 1,

where the first inequality follows from Claim 1 and the second inequality follows from the fact
that Q2

1(t) · Q2
2(t) = 0 for all t ≥ 0 by 2. Denote the stationary distribution of the Markov Chain

(Q2(t))t≥0 by π, which is granted by Lemma 11. Per Lemma 9, we have

Eπ[|Q2
2(0)−Q2

1(0)|] ≤
1

2ϵ
,

Per Lemma 2 and Proposition 7, we have E[|Q2
2(t)−Q2

1(t)|] ≤ ϵ−1 for all t ≥ 0. Since Q2
2(t) ≥ Q2(t)

and Q2
1(t) ≤ Q1(t) for all t ≥ 0 by 1, together with Lemma 14, we get E[Q2

1(t)] ≤ ϵ−1 and
E[Q2(t)] ≤ E[Q2

2(t)] ≤ 2ϵ−1 for all t ≥ 0.

Next, we upper bound E[Q3(t)], for which we can no longer achieve the optimal scaling of
O(ϵ−1).

Lemma 16. E[Q3(t)] ≤ O(ϵ−2) for all t ≥ 0 under TP.

Proof. Consider the following Lyapunov function

L(t) ≜ β1
(
Q3

1(t)
)2

+ β2
(
Q3

2(t)−Q3
1(t)
)2

+
(
Q3

3(t)−Q3
2(t) +Q3

1(t)
)2

, (29)

where we will determine β1, β2 ∈ R≥0 momentarily. Define B(t) ≜ {i ∈ A | Q3
i (t) > 0} as the set of

non-empty queues at the end of time t. Define the following events E1(t) ≜ {B(t) = {1}}, E2(t) ≜
{B(t) = {2}}, E3(t) ≜ {B(t) = {3}}, and E4(t) ≜ {B(t) = {1, 3}}. Note that by 2, the union of
these events forms a partition when L(t) > 0. Next, we introduce the following claim on bounding
E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, Ei(t)] for 1 ≤ i ≤ 4.

Claim 2. For all t ≥ 0, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, E1(t)]
≤ −2 [(β1 + β2) (λ2 − λ1)− (λ3 − λ2 + λ1)] ·

∣∣Q3
3(t)−Q3

2(t) +Q3
1(t)
∣∣+ β1 + β2 + 1.

Moreover, for all k = 2, 3, 4, and t ≥ 0, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, Ek(t)] ≤ −2ϵ
∣∣Q3

3(t)−Q3
2(t) +Q3

1(t)
∣∣+ 2(β1 + β2 + 1).

The proof of Claim 2 is deferred to Appendix B.1.2. Note that per Claim 2, L(t) has a negative
drift under E2(t), E3(t), E4(t) regardless of the choices of β1 and β2, but the sign of the drift is
unclear under E1(t). Let δ ≜ (β1 + β2)(λ2 − λ1) − (λ3 − λ2 + λ1) be the coefficient in the drift of
L(t) under E1(t). In order to ensure that L(t) has a negative drift under E1(t) as well, we will pick
β1 and β2 to ensure that δ > 0. Therefore, the overall drift is given by

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0] ≤ −2min{δ, ϵ}
∣∣Q3

3(t)−Q3
2(t) +Q3

1(t)
∣∣+ 2(β1 + β2 + 1)

= −2min{δ, ϵ}
∣∣Q3

3(t)−Q3
2(t) +Q3

1(t)
∣∣+ 2(δ + λ3)

λ2 − λ1
.
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It follows by Lemma 11 that the stationary distribution π of the Markov chain (Q3(t))t≥0 exists.
Moreover, by Lemma 9, and if we choose appropriate β1 and β2 such that δ = ϵ,

Eπ

[∣∣Q3
3(0)−Q3

2(0) +Q3
1(0)

∣∣] ≤ 2(δ + λ3)

2(λ2 − λ1)min{δ, ϵ}
=

2(ϵ+ λ3)

2ϵ(λ2 − λ1)
≤ O(ϵ−2), (30)

where the last inequality holds since λ3 ≤ 1 and λ2−λ1 ≥ ϵ. To translate the expected queue-length
under the steady-state to that at all times, by Lemma 2 and Proposition 7, we have

E
[∣∣Q3

3(t)−Q3
2(t) +Q3

1(t)
∣∣] ≤ O(ϵ−2)

for all t ≥ 0. Moreover, by Lemma 15, we have E[Q2(t)] ≤ 2ϵ−1 for all t ≥ 0. Therefore, by 1, we
conclude that E[Q3(t)] ≤ E[Q3

3(t)] ≤ O(ϵ−2) for all t ≥ 0.

Remark 2. Note that in the analysis of Lemma 16, we are unable to achieve the optimal scaling
of O(ϵ−1) for the expected length of queue 3 in certain cases by using the generalized quadratic
Lyapunov function defined in (29). Specifically, when λ3 = Ω(1) and λ2 − λ1 = O(ϵ), the last
inequality in (30) will be tight. Furthermore, when generalizing our analysis to matching networks
with an arbitrary depth, similar situations would repetitively occur as the depth grows, indicating
that it is inevitable for the resulting regret to depend on the depth.

B.1.1 Proof of Claim 1

. First, assume that Q2
1(t) > 0. If an agent of type 1 arrives, then we have

(Q2
2(t+ 1)−Q2

1(t+ 1))− (Q2
2(t)−Q2

1(t)) = −1,
(Q2

2(t+ 1)−Q2
1(t+ 1)) + (Q2

2(t)−Q2
1(t)) = −2Q2

1(t)− 1.

If an agent of type 2 arrives, then we have

(Q2
2(t+ 1)−Q2

1(t+ 1))− (Q2
2(t)−Q2

1(t)) = 1,

(Q2
2(t+ 1)−Q2

1(t+ 1)) + (Q2
2(t)−Q2

1(t)) = −2Q2
1(t) + 1.

And, if an agent of type 3 arrives, L(t+ 1) = L(t). Thus, we have for all t ≥ 0,

E
[
(L(t+ 1)− L(t) | Q2(t),L(t) > 0, Q2

1(t) > 0
]
≤ −2Q2

1(t)(λ2 − λ1) + λ1 + λ2

≤ −2ϵQ2
1(t) + 1,

where we used the fact that λ2 − λ1 ≥ ϵ and λ1 + λ2 ≤ 1.
Now assume that Q2

2(t) > 0. If an agent of type 1 or 3 arrives, then we have

(Q2
2(t+ 1)−Q2

1(t+ 1))− (Q2
2(t)−Q2

1(t)) = −1,
(Q2

2(t+ 1)−Q2
1(t+ 1)) + (Q2

2(t)−Q2
1(t)) = 2Q2

2(t)− 1,

and if an agent of type 2 arrives, then we have

(Q2
2(t+ 1)−Q2

1(t+ 1))− (Q2
2(t)−Q2

1(t)) = 1,

(Q2
2(t+ 1)−Q2

1(t+ 1)) + (Q2
2(t)−Q2

1(t)) = 2Q2
2(t) + 1.

Thus, we have for all t ≥ 0,

E
[
(L(t+ 1)− L(t) | Q2(t),L(t) > 0, Q2

2(t) > 0
]
≤ −2Q2

2(t)(λ3 − λ2 + λ1) + λ1 + λ2 + λ3

≤ −2ϵQ2
2(t) + 1 ,

where we used the fact that λ3 − λ2 + λ1 ≥ ϵ and λ1 + λ2 + λ3 ≤ 1.
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B.1.2 Proof of Claim 2

Under E1(t), any arriving agent with types 1 or 3 increases Q3
1(t) or Q

3
3(t) by 1, respectively. If the

arriving agent is of type 2, Q3
1(t) decreases by 1, and an arriving agent of type 4 does not affect

the queue-lengths since Q3
3(t) = 0. Thus, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, E1(t)]
≤ (−2β1(λ2 − λ1)Q

3
1(t) + β1) + (−2β2(λ2 − λ1)Q

3
1(t) + β2) + (2(λ3 − λ2 + λ1)Q

3
1(t) + 1)

= (−2(β1 + β2)(λ2 − λ1)Q
3
1(t) + β1 + β2) + (2(λ3 − λ2 + λ1)Q

3
1(t) + 1)

= −2 [(β1 + β2) (λ2 − λ1)− (λ3 − λ2 + λ1)] |Q3
3(t)−Q3

2(t) +Q3
1(t)|+ β1 + β2 + 1 ,

where the last equality holds because under E1(t), we have Q3
3(t) = Q3

2(t) = 0. Under E2(t), any
arriving agent of type 2 increases Q3

2(t) by 1, and any arriving agent of types 1 or 3 decreases Q3
2(t)

by 1, while Q3
1(t+1) = Q3

3(t+1) = 0. An arriving agent of type 4 does not affect the queue-lengths.
Thus, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, E2(t)] ≤ −2(β2 + 1)(λ3 − λ2 + λ1)Q
3
2(t) + β2 + 1

≤ −2(β2 + 1)ϵ|Q3
3(t)−Q3

2(t) +Q3
1(t)|+ β2 + 1

≤ −2ϵ|Q3
3(t)−Q3

2(t) +Q3
1(t)|+ β2 + 1.

Under E3(t), any arriving agent of type 1 increases Q3
1(t) by 1, any arriving agent of type 2 decreases

Q3
3(t) by 1, any arriving agent of type 3 increases Q3

3(t) by 1, and any arriving agent of type 4
decreases Q3

3(t) by 1. Thus, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, E3(t)] ≤ 2(β1 + β2)λ1 − 2(λ4 − λ3 + λ2 − λ1)Q
3
3(t) + 1

≤ −2ϵ|Q3
3(t)−Q3

2(t) +Q3
1(t)|+ 2(β1 + β2) + 1.

Finally, under E4(t), any arriving agent of types 1 or 3 increases Q3
1(t) or Q

3
3(t) by 1, respectively.

Any arriving agent of type 2 decreases Q3
1(t) by 1, and any arriving agent of type 4 decreases Q3

3(t)
by 1. Thus, we have

E[L(t+ 1)− L(t) | Q3(t),L(t) > 0, E4(t)]
≤ −2(λ2 − λ1)(β1 + β2)Q

3
1(t) + (λ1 + λ2)(β1 + β2)− 2(λ4 − λ3 + λ2 − λ1)(Q

3
1(t) +Q3

3(t)) + 1

≤ −2(λ4 − λ3 + λ2 − λ1)(Q
3
1(t) +Q3

3(t)) + 1 + (λ1 + λ2)(β1 + β2)

≤ −2ϵ|Q3
3(t)−Q3

2(t) +Q3
1(t)|+ (β1 + β2) + 1,

concluding the proof.

B.2 Towards optimal regret scaling

In this subsection, we assume that (A,M) is a path with 4 nodes, where 1 is the leaf node and 4 is
the root. We aim to upper bound the expected length of queue 3 by O(ϵ−1) under the stationary
distribution. It then follows by Proposition 7 and Lemma 2 that E[Q3(t)] ≤ O(ϵ−1) for every t ≥ 0.

Proposition 8. Suppose that (A,M) is a path with 4 nodes, where 1 is the leaf node. Then, under
TP, Eπ[Q3(t)] ≤ O(ϵ−1).
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Proof. Recall that queue 4 is truncated as it is under-demanded, and let S denote the system
obtained by further truncating queue 2. By Lemma 12, it suffices to show that Eπ[Q3(t)] ≤ O(ϵ−1)
under S. From now on, we use (Q(t))t≥0 to denote the queue-length process under S.

Next, we define another system S ′ by modifying S. In particular, we will “split” queue 3 into
two sub-queues 3′ and 3′′ with arrival probability λ3′ ≜ λ2−λ1−ϵ/2 and λ3′′ ≜ λ3−(λ2−λ1−ϵ/2),
respectively, where agents in queue 3′ can only match with agents in queue 2, and agents in queue
3′′ can only match with agents in queue 4. Notice that both λ3′ and λ3′′ are strictly positive since,
by Lemma 3,

min{λ2 − λ1, λ3 − λ2 + λ1} ≥ ϵ.

We implement the splitting by randomly assigning each agent in queue 3 to queue 3′ and queue
3′′ with probability proportional to respectively λ3′ and λ3′′ . Under S ′, when an agent in queue 2
arrives, TP first tries to match it with an agent in queue 1, then tries to match it with an agent in
queue 3′ if queue 1 is empty, and finally discards this agent otherwise. Moreover, when an agent in
queue 4 arrives, TP first tries to match it with an agent in queue 3′′, and then discards this agent
if queue 3′′ is empty. Notice that every arriving agent to queues 1, 3, or 3′′ will immediately join
the queue since its neighboring queues are all truncated and hence empty.

We couple the arrival processes of S and S ′ in the most natural way, where arrivals in queue
3′ and queue 3′′ under S ′ are coupled with arrivals in queue 3 under S. Denote (Q′(t))t≥0 as the
queue-length process under S ′. We first show that, for every sample path, Q1(t) = Q′

1(t) for every
t ≥ 0.

Lemma 17. Under the above coupling between the arrival processes of S and S ′, for every sample
path, Q1(t) = Q′

1(t) for every t ≥ 0.

Proof. The statement holds for t = 0 since Q1(0) = Q′
1(0) = 0. Assume for induction that

Q1(t) = Q′
1(t) for time t ≥ 0, and we show that it also holds for time t+1. If the arrival under S at

time t+1 belongs to queue 3 or queue 4, then Q1(t+1) = Q1(t) = Q′
1(t) = Q′

1(t+1). If the arrival
under S at time t+ 1 belongs to queue 1, then Q1(t+ 1) = Q1(t) + 1, and Q′

1(t+ 1) = Q′
1(t) + 1,

implying Q1(t + 1) = Q′
1(t + 1). If the arrival under S at time t + 1 belongs to queue 2, since by

the matching rule of TP, either both the arrivals under S and S ′ are matched to an agent in queue
1, or none of them does, implying Q1(t+ 1) = Q′

1(t+ 1).

Next, we show that under every sample path, Q3(t) ≤ Q′
3′(t) +Q′

3′′(t) for every t ≥ 0.

Lemma 18. Under the above coupling between the arrival processes of S and S ′, for every sample
path, Q3(t) ≤ Q′

3′(t) +Q′
3′′(t) for every t ≥ 0.

Proof. The statement holds for t = 0 since Q3(0) = Q′
3′(0) = Q′

3′′(0) = 0. Assume for induction
that Q3(t) ≤ Q′

3′(t)+Q′
3′′(t) for time t ≥ 0, and we show that it also holds for time t+1. Recall that

we couple the arrival processes of S and S ′ in the most natural way, and we prove the statement
for different possibilities of the arrival at time t+1. Suppose that the arrival under S at time t+1
belongs to queue i.

• If i = 1, then Q3(t + 1) = Q3(t), Q
′
3′(t + 1) = Q′

3′(t), and Q′
3′′(t + 1) = Q′

3′′(t), implying
Q3(t+ 1) ≤ Q′

3′(t+ 1) +Q′
3′′(t+ 1).

• If i = 3, then Q3(t+1) = Q3(t)+1 and Q′
3′(t+1)+Q′

3′′(t+1) = Q′
3′(t)+Q′

3′′(t)+1, implying
Q3(t+ 1) ≤ Q′

3′(t+ 1) +Q′
3′′(t+ 1).
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• If i = 2, by Lemma 17, either both arrivals under S and S ′ are matched with an agent in queue
1, or none of them does. In the former case, we have Q3(t+ 1) = Q3(t), Q

′
3′(t+ 1) = Q′

3′(t),
and Q′

3′′(t+ 1) = Q′
3′′(t), implying Q3(t+ 1) ≤ Q′

3′(t+ 1) +Q′
3′′(t+ 1).

Now, we focus on the latter case, where none of the arrivals under S and S ′ are matched with
an agent in queue 1. If Q3(t) = 0, then Q3(t + 1) = Q3(t) = 0 ≤ Q′

3′(t + 1) + Q′
3′′(t + 1).

Otherwise, the arrival under S is matched to an agent in queue 3, which gives Q3(t + 1) =
Q3(t)− 1. Since Q′

3′(t+ 1) ≥ Q′
3′(t)− 1 and Q′

3′′(t+ 1) = Q′
3′′(t), it follows that

Q3(t+ 1) = Q3(t)− 1 ≤ Q′
3′(t) +Q′

3′′(t)− 1 ≤ Q′
3′(t+ 1) +Q′

3′′(t+ 1),

as desired.

• Suppose that i = 4. If Q3(t) = 0, then Q3(t+1) = Q3(t) = 0 ≤ Q′
3′(t+1)+Q′

3′′(t+1) holds.
Otherwise, the arrival under S is matched to an agent in queue 3, which gives Q3(t + 1) =
Q3(t)− 1. Since Q′

3′(t+ 1) = Q′
3′(t) and Q′

3′′(t+ 1) ≥ Q′
3′′(t)− 1, it follows that

Q3(t+ 1) = Q3(t)− 1 ≤ Q′
3′(t) +Q′

3′′(t)− 1 ≤ Q′
3′(t+ 1) +Q′

3′′(t+ 1),

as desired.

Therefore, the statement holds for time t+ 1, completing the proof.

Note that we can view the system consisting of queues 1, 2, and 3′ as anM/M/1 queueing system
with request arrival rate λ1 + λ3′ = λ2− ϵ/2 and service rate λ2, and view the system consisting of
queues 3′′ and 4 as an M/M/1 queueing system with request arrival rate λ3′′ = λ1 + λ3 − λ2 + ϵ/2
and service rate λ4. These two queueing systems are independent by the construction of S ′, and the
service rate in every system is greater than its request arrival rate by ϵ/2 since λ4 ≥ λ1+λ3−λ2+ϵ
by Lemma 3. Hence, by Lemmas 17 and 18,

Eπ[Q1(t) +Q3(t)] ≤ Eπ[Q
′
1(t) +Q′

3′(t) +Q′
3′′(t)] ≤

4

ϵ
,

where the second inequality holds by the standard queue-length bound for M/M/1 queueing sys-
tems, implying Eπ[Q3(t)] ≤ O(ϵ−1).

Discussion on generalizing Proposition 8. We show in Proposition 8 that the expected length
of Q3 is upper bounded by O(ϵ−1) in the stationary distribution via a careful splitting argument.
It is then natural to ask whether one can generalize this approach to bound the expected queue
lengths in more general networks. Unfortunately, as we argue now, this approach does not even
apply to other queues in a longer path. Recall that our approach involves two key steps:

1. We first split certain queues to create multiple independent sub-systems, where each sub-
system contains only one “server” queue or only one “request” queue so that the expected
queue length can be bounded using standard results for M/M/1 queueing systems.

2. Then, we apply Lemmas 17 and 18 to argue that, under each sample path, the total queue
length in these sub-systems upper bounds the total queue length in the original system.

Nevertheless, the second step no long holds true in more general networks. Intuitively, this is
because assigning agents into different sub-systems may accidentally result in better matching
decisions, rendering a smaller total queue length.
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We illustrate this barrier in the case where (A,M) is a path with 5 nodes. To bound Eπ[Q4(t)],
one attempt would be to truncate the queues with an even depth, i.e., the queues with an odd index.
Suppose that we split queue 2 into sub-queues 2′ and 2′′, and we couple the original system S and
the new system S ′ in the most natural way. We specify a sample path under which Q2(t)+Q4(t) >
Q′

2′(t) + Q′
2′′(t) + Q′

4(t), where (Q(t))t≥0 and (Q′(t))t≥0 are the queue-length processes of S and
S ′, respectively. Consider the arrival sequence (2, 4, 3, 1) under S, and suppose the corresponding
arrival sequence under S ′ is (2′, 4, 3, 1). Only one match (2, 3) is performed by TP under S, whereas
two matches (3, 4) and (1, 2′) are performed by TP under S ′, implying

Q2(4) +Q4(4) = 1 > 0 = Q′
2′(4) +Q′

2′′(4) +Q′
4(t).

Similar examples can be exploited to show that splitting other queues such as 3 or 4 does not always
lead to a larger total queue length under all sample paths.

C Deferred proofs

C.1 Proof of Lemma 1

Recall that the constraints of SPP(λ) can be written as[
M I

] [z
s

]
= λ,

where I ∈ Rn×n is the identity matrix. Let MB ∈ Rn×n be the matrix obtained by selecting the
columns of [M I] corresponding to basic variables of SPP(λ), which implies that MB is full-rank.
Hence, (z∗M+

, s∗A+
)T = M−1

B λ. For each vector v ∈ Rn, we use (M−1
B v)M+ to denote the first |M+|

components of M−1
B v. Fix t > 0. Note that

R∗(t) ≤ t · rTM+
z∗ = t · rTM+

(
M−1

B λ
)
M+

and

RΠ(t) = E
[
rTD(t)

]
= E

[
rTM+

(
M−1

B (A(t)−Q(t))
)
M+

]
= E

[
rTM+

(
M−1

B (tλ−Q(t))
)
M+

]
.

Therefore, the regret of Π after time t is

R∗(t)−RΠ(t) ≤ E
[
rTM+

(
M−1

B Q(t)
)
M+

]
≤ rmax ·

∥∥M−1
B

∥∥
∞ · E [∥Q(t)∥1] ≤ rmaxB ·

∥∥M−1
B

∥∥
∞ .

By [KAG25, Theorem 4.1], each entry of M−1
B lies between [−1, 1], implying that

∥∥M−1
B

∥∥
∞ ≤ n.

This concludes the proof.

C.2 Deferred proofs for Section 4.2

C.2.1 Proof of Lemma 4

The upper bound holds straightforwardly for i ∈ A0 such that d(r, i) ≤ 2 since P(i) = ∅. For
i ∈ A0 such that d(r, i) > 2, assume by induction that the upper bound holds for all j ∈ P(i), and
we show that it also holds for i. By (8),

αi = 1 +
1

ϵi

∑
j∈P(i)

αj(λj − ϵj) ≤ 1 +
1

ϵ

∑
j∈P(i)

αj ≤ 1 +
1

ϵ

∑
j∈P(i)

(
1 +

1

ϵ

)⌊(d(r,j)−1)/2⌋

= 1 +
1

ϵ

⌊(d(r,i)−3)/2⌋∑
t=0

(
1 +

1

ϵ

)t

=

(
1 +

1

ϵ

)⌊(d(r,i)−1)/2⌋
,
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where the first inequality holds since ϵi ≥ ϵ and 0 ≤ ϵj ≤ λj ≤ 1 for every j ∈ P(i), and the second
inequality holds by the inductive hypothesis. Hence, the upper bound also holds for i, concluding
the proof.

C.2.2 Proof of Proposition 2

Fix t ≥ 0, and we aim to upper bound the Lyapunov drift E[L(t + 1) − L(t) | Q(t)], where the
expectation is taken over the randomness of the arrival at time t+1. For each match m ∈M, let xm
denote the probability that m is performed by TP at time t+ 1. Let E1 ≜ {i ∈ A0 | fi(Q(t)) > 0}
be the set of over-demanded nodes i with a strictly positive fi(Q(t)). The next lemma simplifies
the Lyapunov drift.

Lemma 19. It holds that

E[L(t+ 1)− L(t) | Q(t)] ≤ 2
∑
i∈E1

αi · fi(Q(t)) · fi(λ−Mx) + n

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
. (31)

Proof. Recall that Q(t+1) = Q(t)+∆A(t+1)−M∆D(t+1). Since fi(·) is linear, for every i ∈ A0,

fi(Q(t+ 1))− fi(Q(t)) = fi(Q(t+ 1)−Q(t)) = fi(∆A(t+ 1)−M∆D(t+ 1)) (32)

=
∑

j∈T −(i)

(−1)d(i,j)+1(∆A(t+ 1)−M∆D(t+ 1))j . (33)

Since TP always matches the arriving agent whenever it has a non-empty neighboring queue, there
is precisely one non-zero entry in ∆A(t+ 1)−M∆D(t+ 1), which must be either 1 or −1. Hence,
(33) implies that, for every i ∈ A0,

|fi(Q(t+ 1))− fi(Q(t))| ≤ 1 . (34)

By (9),

E[L(t+ 1)− L(t) | Q(t)] =
∑
i∈A0

αi · E[(fi(Q(t+ 1))+)2 − (fi(Q(t))+)2 | Q(t)].

For each i ∈ A0 with fi(Q(t)) < 0, (34) implies fi(Q(t + 1)) ≤ fi(Q(t)) + 1 ≤ 0, and hence
fi(Q(t))+ = fi(Q(t+1))+ = 0. Also, for each i ∈ A0 with fi(Q(t)) = 0, (34) implies fi(Q(t+1)) ≤
fi(Q(t)) + 1 ≤ 1, and hence (fi(Q(t + 1))+)2 − (fi(Q(t))+)2 ≤ 1. Recall that E1 ≜ {i ∈ A0 |
fi(Q(t)) > 0} denotes the set of nodes i with a strictly positive fi(Q(t)). As a result,

E[L(t+ 1)− L(t) | Q(t)] ≤
∑
i∈E1

αi · E[(fi(Q(t+ 1))+)2 − (fi(Q(t))+)2 | Q(t)] +
∑

i∈A0\E1

αi . (35)

Fix i ∈ E1. By (34), we have fi(Q(t+ 1)) ≥ fi(Q(t))− 1 ≥ 0. It holds that

(fi(Q(t+ 1))+)2 − (fi(Q(t))+)2 = fi(Q(t+ 1))2 − fi(Q(t))2

= (fi(Q(t+ 1))− fi(Q(t)))2 − 2fi(Q(t)) (fi(Q(t))− fi(Q(t+ 1)))

≤ 1 + 2fi(Q(t)) (fi(Q(t+ 1))− fi(Q(t)))

= 2fi(Q(t)) · fi(∆A(t+ 1)−M∆D(t+ 1)) + 1 ,
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where the inequality holds by (34), and the last equality holds by (32). It follows that

E[(fi(Q(t+ 1))+)2 − (fi(Q(t))+)2 | Q(t)] ≤ E[2fi(Q(t)) · fi(∆A(t+ 1)−M∆D(t+ 1)) + 1 | Q(t)]

= 2fi(Q(t)) · fi(E[∆A(t+ 1)−M∆D(t+ 1) | Q(t)]) + 1

= 2fi(Q(t)) · fi(λ−Mx) + 1,

where the first equality holds since fi(·) is linear. Combining the above displayed equation and
(35), we obtain

E[L(t+ 1)− L(t) | Q(t)] ≤
∑
i∈E1

αi(2fi(Q(t)) · fi(λ−Mx) + 1) +
∑

i∈A0\E1

αi

= 2
∑
i∈E1

αi · fi(Q(t)) · fi(λ−Mx) +
∑
i∈A0

αi

≤ 2
∑
i∈E1

αi · fi(Q(t)) · fi(λ−Mx) + n

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
,

where the last inequality holds by Lemma 4 and the fact that d(r, i) ≤ dr for every i ∈ A0.

It remains to upper bound the RHS of (31). Define E2 ≜ {i ∈ A0 | ∥QC(i)(t)∥1 > 0} as the set of
over-demanded nodes i such that at least one of its child nodes has a non-empty queue after time t.
The following lemma establishes that fi(λ−Mx) = −ϵi for every i ∈ E2, and fi(λ−Mx) ≤ λi − ϵi
for every i ∈ E1 \ E2.

Lemma 20. fi(λ−Mx) = −ϵi for every i ∈ E2, and fi(λ−Mx) ≤ λi − ϵi for every i ∈ E1 \ E2.

Proof. By (10),

fi(λ−Mx) =
∑

j∈T −(i)

(−1)d(i,j)+1(λ−Mx)j

= λi − ϵi −
∑

j∈T −(i)

(−1)d(i,j)+1(Mx)j , (36)

where the second equality holds by Lemma 3.
Hence, to upper bound fi(λ−Mx) given by (36), it suffices to lower bound

(λi − ϵi)− fi(λ−Mx) =
∑

j∈T −(i)

(−1)d(i,j)+1(Mx)j = E

 ∑
j∈T −(i)

(−1)d(i,j)+1(M∆D(t+ 1))j

∣∣∣∣∣ Q(t)

 .

Define random variable Wi ≜
∑

j∈T −(i)(−1)d(i,j)+1(M∆D(t + 1))j . Depending on the matches
performed at time t+ 1, Wi = 0 happens in the following three cases:

1. No match is performed, implying ∆D(t+ 1) = 0.

2. The performed match m(ℓ1, ℓ2) satisfies ℓ1, ℓ2 ∈ A \ T −(i), implying (M∆D(t+ 1))j = 0 for
every j ∈ T −(i).

3. The performed match m(ℓ1, ℓ2) satisfies ℓ1, ℓ2 ∈ T −(i). In this case, (M∆D(t+ 1))j = 0 for
every j ∈ T −(i) \ {ℓ1, ℓ2}, and

(−1)d(i,ℓ1)+1(M∆D(t+ 1))ℓ1 + (−1)d(i,ℓ2)+1(M∆D(t+ 1))ℓ2 = (−1)d(i,ℓ1)+1 + (−1)d(i,ℓ2)+1 = 0,

where the last equality holds since ℓ1 and ℓ2 are adjacent.
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As the only remaining case, suppose that the performed match m(ℓ1, ℓ2) satisfies ℓ1 = i and
ℓ2 ∈ C(i). In this case, (M∆D(t + 1))j = 0 for every j ∈ T −(i) \ {ℓ2} and (M∆D(t + 1))ℓ2 = 1,
implying that Wi = 1. In all cases, we always have Wi ≥ 0, and hence fi(λ−Mx) = λi−ϵi−E[Wi |
Q(t)] ≤ λi − ϵi. This concludes the second part of Lemma 20. Furthermore, if i ∈ E2, by the
matching rule of SP, Wi = 1 holds if and only if an agent of type i arrives at time t + 1, which
happens with probability λi. Therefore, E[Wi | Q(t)] = λi for i ∈ E2, concluding the first part of
Lemma 20.

We write∑
i∈E1

αi · fi(Q(t)) · fi(λ−Mx) =
∑

i∈E1∩E2

αi · fi(Q(t)) · fi(λ−Mx)︸ ︷︷ ︸
U1

+
∑

i∈E1\E2

αi · fi(Q(t)) · fi(λ−Mx)

︸ ︷︷ ︸
U2

.

Lemma 20 ensures that U1 < 0 since fi(Q(t)) > 0 for every i ∈ E1, and provides an upper bound
for fi(λ −Mx) for i ∈ E1 \ E2. To show that U2 is small, it remains to upper bound fi(Q(t)) for
i ∈ E1 \ E2. For every i ∈ A0 \ E2, let H(i) be the set of nodes j ∈ T −(i) ∩ E2 that satisfy the
following conditions:

1. d(i, j) ≡ 0 (mod 2), and

2. for every k ∈ P(j) ∩ T −(i) (nodes k on the path between i and j (excluding i and j) with
d(i, k) ≡ 0 (mod 2)), k /∈ E2.

Equivalently, we can constructively define H(i) as follows: Imagine walking from i down to the
leaf nodes in the subtree rooted at i with step size 2. If we encounter a node in E2, then we add
the current node into H(i) and stop; otherwise, we continue walking. One can also see by this
constructive definition that T −(j) ∩ T −(k) = ∅ for all j, k ∈ H(i) with j ̸= k, i.e., there is no
overlapping between any two rooted subtrees with different roots j, k ∈ H(i).

The following lemma states that for every i ∈ A0 \E2, we can upper bound fi(Q(t)) by the sum
of fj(Q(t)) over all j ∈ H(i).

Lemma 21. For every i ∈ A0 \ E2,

fi(Q(t)) ≤
∑

j∈H(i)

fj(Q(t)).

Proof. Recall that E2 ≜ {i ∈ A0 | ∥QC(i)(t)∥1 > 0}. Fix i ∈ A0 \ E2. Recall that T −(j)∩T −(k) = ∅
for all j, k ∈ H(i) with j ̸= k. Define U ≜

⋃
j∈H(i) T −(j). Since d(i, j) ≡ 0 (mod 2) for every

j ∈ H(i), we have∑
k∈U

(−1)d(i,k)+1Qk(t) =
∑

j∈H(i)

∑
k∈T −(j)

(−1)d(j,k)+1Qk(t) =
∑

j∈H(i)

fj(Q(t)).

Moreover, by the definition of H(i), j /∈ E2 for every j ∈ T −(i) \ (U ∪ H(i)) such that d(i, j) ≡ 0
(mod 2), implying Qj(t) = 0 for every j ∈ T −(i) \ U such that d(i, j) ≡ 1 (mod 2). Hence,∑

j∈T −(i)\U

(−1)d(i,j)+1Qj(t) =
∑

j∈T −(i)\U

1{d(i,j)≡0 (mod 2)} · (−1)d(i,j)+1Qj(t) ≤ 0.
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Combining the above two displayed equations,

fi(Q(t)) =
∑

j∈T −(i)

(−1)d(i,j)+1Qj(t)

=
∑
j∈U

(−1)d(i,j)+1Qj(t) +
∑

j∈T −(i)\U

(−1)d(i,j)+1Qj(t) ≤
∑

j∈H(i)

fj(Q(t)),

concluding the proof.

Next, we apply Lemmas 20 and 21 to formally upper bound the first term in the RHS of (31),
showing that L(t) has a one-step negative drift.

Lemma 22. It holds that∑
i∈E1

αi · fi(Q(t)) · fi(λ−Mx) ≤ −
∑

i∈E1∩E2

fi(Q(t)) · ϵi.

Proof. We have∑
i∈E1

αi · fi(Q(t)) · fi(λ−Mx)

=
∑

i∈E1∩E2

αi · fi(Q(t)) · fi(λ−Mx) +
∑

i∈E1\E2

αi · fi(Q(t)) · fi(λ−Mx)

≤
∑

i∈E1∩E2

αi · fi(Q(t)) · (−ϵi) +
∑

i∈E1\E2

αi · fi(Q(t)) · (λi − ϵi)

≤
∑

i∈E1∩E2

αi · fi(Q(t)) · (−ϵi) +
∑

i∈E1\E2

αi(λi − ϵi)
∑

j∈H(i)

fj(Q(t))

=
∑
i∈E2

fi(Q(t))

−1{i∈E1} · αiϵi +
∑

j∈E1\E2

1{i∈H(j)} · αj(λj − ϵj)

 , (37)

where the first inequality holds by Lemma 20 and the fact that fi(Q(t)) > 0 for every i ∈ E1,
the second inequality holds by Lemma 21, and the last equality holds since H(i) ⊆ E2 for every
i ∈ E1 \ E2. To further upper bound (37), we consider each i ∈ E2 individually. On one hand, for
every i ∈ E2 \ E1, since fi(Q(t)) ≤ 0 by the definition of E1, we have

fi(Q(t))

−1{i∈E1} · αiϵi +
∑

j∈E1\E2

1{i∈H(j)} · αj(λj − ϵj)


= fi(Q(t))

 ∑
j∈E1\E2

1{i∈H(j)} · αj(λj − ϵj)

 ≤ 0.

On the other hand, for every i ∈ E1 ∩ E2, which satisfies fi(Q(t)) > 0, it holds that

−1{i∈E1} · αiϵi +
∑

j∈E1\E2

1{i∈H(j)} · αj(λj − ϵj) ≤ −αiϵi +
∑

j∈P(i)∩(E1\E2)

αj(λj − ϵj)

≤ −αiϵi +
∑

j∈P(i)

αj(λj − ϵj) = −ϵi,

where the first inequality holds since i ∈ H(j) implies j ∈ P(i), and the last equality holds by (8).
Combining the above three displayed equations concludes the proof.
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By Lemmas 19 and 22, and the fact that ϵ ≤ ϵi ≤ 1 for every i ∈ A, we get

E[L(t+ 1)− L(t) | Q(t)] ≤ −2ϵ
∑

i∈E1∩E2

fi(Q(t)) + n

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
. (38)

Then, we apply the following lemma to translate the above Lyapunov drift in terms of f to a drift
in terms of the total queue length.

Lemma 23. For every q ∈ Zn
≥0, let E1 ≜ {i ∈ A0 | fi(q) > 0} and E2 ≜ {i ∈ A0 | ∥qC(i)∥1 > 0}.

Then,

1

2dr

∑
i∈A0

qi ≤
∑

i∈E1∩E2

fi(q).

Proof. Fix q ∈ Zn
≥0. We prove a stronger statement that

1

2di

∑
j∈T −(i)

qj ≤
∑

j∈T (i)∩E1∩E2

fj(q) (39)

for every i ∈ A, and Lemma 23 follows by setting i = r.
For those i ∈ A with di = 0, i.e., i is a leaf node, (39) holds straightforwardly since both sides

equal 0. Assume by induction that (39) holds for all i ∈ A with di < k such that k ∈ [dr], and we
show that (39) holds for all i ∈ A with di = k. Fix i ∈ A with di = k. Observe that∑

j∈T −(i)∩E1∩E2

fj(q) =
∑

j∈C(i)

∑
k∈T (j)∩E1∩E2

fk(q)

≥
∑

j∈C(i)

1

2dj

∑
k∈T −(j)

qk ≥
1

2di−1

∑
j∈C(i)

∑
k∈T −(j)

qk,

where the first inequality holds by the inductive hypothesis. Hence,∑
j∈T (i)∩E1∩E2

fj(q) ≥ 1{i∈E1∩E2} · fi(q) +
1

2di−1

∑
j∈C(i)

∑
k∈T −(j)

qk,

and it suffices to show that

1{i∈E1∩E2} · fi(q) +
1

2di−1

∑
j∈C(i)

∑
k∈T −(j)

qk ≥
1

2di

∑
j∈T −(i)

qj ,

which is equivalent to

1{i∈E1∩E2} · fi(q) ≥
1

2di

∑
j∈C(i)

qj −
∑

k∈T −(j)

qk

 . (40)

We show that (40) holds under three different cases. Firstly, if i /∈ E1, i.e., fi(q) ≤ 0, then
1{i∈E1∩E2} · fi(q) = 0, and

∑
j∈C(i)

qj −
∑

k∈T −(j)

qk

 ≤ ∑
j∈T −(i)

(−1)d(i,j)+1qj = fi(q) ≤ 0,
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implying (40). Next, if i /∈ E2, i.e., ∥qC(i)∥1 = 0, then 1{i∈E1∩E2} · fi(q) = 0, and

∑
j∈C(i)

qj −
∑

k∈T −(j)

qk

 = −
∑

j∈C(i)

∑
k∈T −(j)

qk ≤ 0,

implying (40). Finally, if i ∈ E1 ∩ E2, then fi(q) > 0 and 1{i∈E1∩E2} = 1; by (10),

fi(q)−
1

2di

∑
j∈C(i)

qj −
∑

k∈T −(j)

qk

 =
∑

j∈T −(i)

(−1)d(i,j)+1qj −
1

2di

∑
j∈C(i)

qj −
∑

k∈T −(j)

qk


=
∑

j∈C(i)

(1− 1

2di

)
qj +

∑
k∈T −(j)

(
(−1)d(i,k)+1 +

1

2di

)
qk


≥

∑
j∈T −(i)

(
1− 1

2di

)
(−1)d(i,j)+1qj

=

(
1− 1

2di

)
fi(q) > 0,

where the inequality holds since qj ≥ 0 for every j ∈ A. This concludes the proof.

Combining (38) and Lemma 23, we obtain

E[L(t+ 1)− L(t) | Q(t)] ≤ − ϵ

2dr−1
∥Q(t)∥1 + n

(
1 +

1

ϵ

)⌊(dr−1)/2⌋
,

as desired. By Lemma 11, the above drift bound also implies that the Markov chain (Q(t))t≥0 is
ergodic, concluding the proof of Proposition 2.

C.3 Deferred proofs for Section 4.3

C.3.1 Proof of Proposition 3

By the second-order Taylor’s expansion at 0, for some θ′ ∈ (0, θ] and any x1, x2 ∈ X , we have

exp (θ(Φ(x2)− Φ(x1))) ≤ exp (θ(max{−δ,Φ(x2)− Φ(x1)}))
= 1 + θ(max{−δ,Φ(x2)− Φ(x1)})

+
θ2

2
(max{−δ,Φ(x2)− Φ(x1)})2 exp

(
θ′(max{−δ,Φ(x2)− Φ(x1)})

)
≤ 1 + θ(max{−δ,Φ(x2)− Φ(x1)})

+
θ2

2
(max{−δ,Φ(x2)− Φ(x1)})2 exp

(
θ(Φ(x2)− Φ(x1))

+
)
.

We now fix an arbitrary x ∈ X such that Φ(x) > K, set x1 = x, x2 = X(t0) and take the
expectation of both sides above to obtain

Ex[exp (θ(Φ(X(t0))− Φ(x)))] ≤ 1 + θEx[(max{−δ,Φ(X(t0))− Φ(x)})]

+
θ2

2
Ex

[
max{−δ,Φ(X(t0))− Φ(x)})2 exp

(
θ(Φ(X(t0))− Φ(x))+

)]
(a)

≤ 1− γθ +
θ2

2
L3(δ, θ, t0)

(b)

≤ 1− γθ/2,
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where (a) follows from (11) and the definition of L3; (b) holds by (12). Note that the condition
Φ(x) > K is equivalent to exp(θ · Φ(x)) > exp(θK). Thus, exp(θ · Φ(x)) is a geometric Lyapunov
function with geometric drift size parameter 1 − γθ/2, drift time parameter t0, and exception
parameter exp(θK).

C.3.2 Proof of Proposition 4

For all i ∈ A0 and t ≥ 0, define

Ri(t) ≜ qi(0) +Ai(t)−
∑

j∈C(i)

Dm(j,i)(t)

as the number of agents arriving at i before and including time t that are not matched with agents
in the children of i. By the matching rule of TTP, Ri(t) also equals the number of agents arriving
at i before and including time t that are not matched immediately upon arrival, i.e.,

Ri(t) = qi(t) +Dm(i,P (i))(t) (41)

for all i ∈ A0 and t ≥ 0.
Analogous to the Lipschitz-continuity results for several classical queueing-network models [CY01],

we establish Proposition 4 via Skorokhod reflection mappings. However, off-the-shelf reflection-map
representations are generally not available for dynamic matching systems, and we derive an explicit
characterization tailored to dynamic matching in the following lemma.

Lemma 24. Under TTP, for all i ∈ A and t ≥ 0,

∑
j∈C(i)

qj(t) =
∑

j∈C(i)

Rj(t)−Ai(t) + max
0≤s≤t

Ai(s)−
∑

j∈C(i)

Rj(s)

+

. (42)

Proof. We prove (42) by induction. Firstly, (42) holds straightforwardly for the base case of t = 0
since all terms in (42) equal zero. We assume that t ≥ 1, and (42) holds for t − 1 and all i ∈ A.
We now show that (42) holds for t and all i ∈ A. Fix i ∈ A. It holds that

∑
j∈C(i)

qj(t) =
∑

j∈C(i)

qj(t− 1) + ∆Aj(t)−∆Dm(j,i)(t)−
∑

k∈C(j)

∆Dm(k,j)(t)


=
∑

j∈C(i)

(Rj(t)−∆Dm(j,i)(t))−Ai(t− 1) + max
0≤s≤t−1

Ai(s)−
∑

j∈C(i)

Rj(s)

+

, (43)

where the second inequality holds by the inductive hypothesis and the identity Rj(t) = Rj(t− 1)+
∆Aj(t) −

∑
k∈C(j)∆Dm(k,j)(t). Since TTP only matches the new arrivals in queue-i with agents

in the children of i, we have
∑

j∈C(i)∆Dm(j,i)(t) ≤ ∆Ai(t).
On one hand, if

∑
j∈C(i)∆Dm(j,i)(t) = ∆Ai(t), then by (43),

∑
j∈C(i)

qj(t) =
∑

j∈C(i)

Rj(t)−Ai(t) + max
0≤s≤t−1

Ai(s)−
∑

j∈C(i)

Rj(s)

+

.
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Since
∑

j∈C(i) qj(t) ≥ 0, by rearranging the terms in the RHS, it follows that

max
0≤s≤t−1

Ai(s)−
∑

j∈C(i)

Rj(s)

+

≥ max

0, Ai(t)−
∑

j∈C(i)

Rj(t)

 =

Ai(t)−
∑

j∈C(i)

Rj(t)

+

.

Combining the above two displayed equations yields

∑
j∈C(i)

qj(t) =
∑

j∈C(i)

Rj(t)−Ai(t) + max
0≤s≤t

Ai(s)−
∑

j∈C(i)

Rj(s)

+

,

concluding the inductive step.
On the other hand, if

∑
j∈C(i)∆Dm(j,i)(t) < ∆Ai(t), which implies there are redundant new

agents in queue-i after matching with all existing agents in the children of i, then we must have∑
j∈C(i) qj(t) = 0. By rewriting (43), we get

∑
j∈C(i)

qj(t) =
∑

j∈C(i)

Rj(t)−Ai(t) + max
0≤s≤t−1

Ai(s)−
∑

j∈C(i)

Rj(s)

+

+∆Ai(t)−
∑

j∈C(i)

∆Dm(j,i)(t).

Since
∑

j∈C(i) qj(t) = 0 and ∆Ai(t)−
∑

j∈C(i)∆Dm(j,i)(t) > 0, by rearranging the RHS of the above
equation, it follows that

max
0≤s≤t−1

Ai(s)−
∑

j∈C(i)

Rj(s)

+

< Ai(t)−
∑

j∈C(i)

Rj(t) ≤

Ai(t)−
∑

j∈C(i)

Rj(t)

+

, (44)

which implies Ai(t)−
∑

j∈C(i)Rj(t) > 0. Therefore,

∑
j∈C(i)

qj(t) = 0 =
∑

j∈C(i)

Rj(t)−Ai(t) +

Ai(t)−
∑

j∈C(i)

Rj(t)

+

=
∑

j∈C(i)

Rj(t)−Ai(t) + max
0≤s≤t

Ai(s)−
∑

j∈C(i)

Rj(s)

+

,

where the second equality follows from Ai(t) −
∑

j∈C(i)Rj(t) > 0, and the last equality holds by
(44). This concludes the inductive step.

For all i ∈ A and t ≥ 0, analogously define R′
i(t), and D′

m(j,i)(t) for j ∈ C(i) under the arrival

trajectory (A′(t))t≥0. For all i ∈ A and t ≥ 0, we have∣∣∣∣∣∣
∑

j∈C(i)

qj(t)−
∑

j∈C(i)

q′j(t)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

j∈C(i)

Rj(t)−
∑

j∈C(i)

R′
j(t)

∣∣∣∣∣∣+ ∣∣Ai(t)−A′
i(t)
∣∣

+

∣∣∣∣∣∣max
0≤s≤t

Ai(s)−
∑

j∈C(i)

Rj(s)

+

− max
0≤s≤t

A′
i(s)−

∑
j∈C(i)

R′
j(s)

+∣∣∣∣∣∣
≤ 2

max
0≤s≤t

∣∣∣∣∣∣
∑

j∈C(i)

Rj(s)−
∑

j∈C(i)

R′
j(s)

∣∣∣∣∣∣+ max
0≤s≤t

∣∣Ai(s)−A′
i(s)
∣∣ , (45)
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where the first inequality holds by Proposition 24, and the second inequality holds since |maxi xi−
maxi yi| ≤ maxi |xi − yi| and |x+ − y+| ≤ |x− y|.

The following lemma bounds the first max term in (45).

Lemma 25. for all i ∈ A and t ≥ 0,

max
0≤s≤t

∣∣∣∣∣∣
∑

j∈C(i)

Rj(s)−
∑

j∈C(i)

R′
j(s)

∣∣∣∣∣∣ ≤
∑

j∈T −(i)

max
0≤s≤t

∣∣Aj(s)−A′
j(s)

∣∣ . (46)

To conclude (15), by (45),∣∣∣∣∣∣
∑
i∈A0

qi(t)−
∑
i∈A0

q′i(t)

∣∣∣∣∣∣ ≤
∑
i∈A

∣∣∣∣∣∣
∑

j∈C(i)

qj(t)−
∑

j∈C(i)

q′j(t)

∣∣∣∣∣∣
≤ 2

∑
i∈A

max
0≤s≤t

∣∣∣∣∣∣
∑

j∈C(i)

Rj(s)−
∑

j∈C(i)

R′
j(s)

∣∣∣∣∣∣+ max
0≤s≤t

∣∣Ai(s)−A′
i(s)
∣∣

≤ 2
∑
i∈A

 ∑
j∈T −(i)

max
0≤s≤t

∣∣Aj(s)−A′
j(s)

∣∣+ max
0≤s≤t

∣∣Ai(s)−A′
i(s)
∣∣

≤ 2(dr + 1)
∑
i∈A

max
0≤s≤t

∣∣Ai(s)−A′
i(s)
∣∣ ,

where the third inequality holds by Lemma 25.
It remains to prove Lemma 25.

Proof of Lemma 25. For all i ∈ A and t ≥ 0,

∑
j∈C(i)

Dm(j,i)(t) =
∑

j∈C(i)

(Rj(t)− qj(t)) = Ai(t)− max
0≤s≤t

Ai(s)−
∑

j∈C(i)

Rj(s)

+

, (47)

where the first equality holds by (41), and the second equality holds by Proposition 24. As a result,

∑
j∈C(i)

Rj(t) =
∑

j∈C(i)

qj(0) +Aj(t)−
∑

k∈C(j)

Dm(k,j)(t)


=
∑

j∈C(i)

qj(0) + max
0≤s≤t

Aj(s)−
∑

k∈C(j)

Rk(s)

+ , (48)

where the first equality holds by the definition of Rj(t), and the second inequality holds by (47);
the same formula also holds for

∑
j∈C(i)R

′
j(t). Applying (48) and the assumption that q(0) = q′(0),
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we get

max
0≤s≤t

∣∣∣∣∣∣
∑

j∈C(i)

Rj(s)−
∑

j∈C(i)

R′
j(s)

∣∣∣∣∣∣
= max

0≤s≤t

∣∣∣∣∣∣
∑

j∈C(i)

max
0≤ℓ≤s

Aj(ℓ)−
∑

k∈C(j)

Rk(ℓ)

+

−
∑

j∈C(i)

max
0≤ℓ≤s

A′
j(ℓ)−

∑
k∈C(j)

R′
k(ℓ)

+∣∣∣∣∣∣
≤ max

0≤s≤t

∑
j∈C(i)

max
0≤ℓ≤s

∣∣∣∣∣∣
∑

k∈C(j)

Rk(ℓ)−
∑

k∈C(j)

R′
k(ℓ)

∣∣∣∣∣∣+ max
0≤ℓ≤s

∣∣Aj(ℓ)−A′
j(ℓ)

∣∣
≤
∑

j∈C(i)

max
0≤s≤t

∣∣∣∣∣∣
∑

k∈C(j)

Rk(s)−
∑

k∈C(j)

R′
k(s)

∣∣∣∣∣∣+ max
0≤s≤t

∣∣Aj(s)−A′
j(s)

∣∣ , (49)

where the first inequality holds since |maxi xi −maxi yi| ≤ maxi |xi − yi| and |x+ − y+| ≤ |x− y|.
Now, we are ready to inductively establish (46). Fix t ≥ 0. First, (46) holds for every leaf node

i since C(i) = T −(i) = ∅. Assume for induction that i ∈ A is an non-leaf node, and (46) holds for
all nodes in T −(i). Then,

max
0≤s≤t

∣∣∣∣∣∣
∑

j∈C(i)

Rj(s)−
∑

j∈C(i)

R′
j(s)

∣∣∣∣∣∣
≤
∑

j∈C(i)

max
0≤s≤t

∣∣∣∣∣∣
∑

k∈C(j)

Rk(s)−
∑

k∈C(j)

R′
k(s)

∣∣∣∣∣∣+ max
0≤s≤t

∣∣Aj(s)−A′
j(s)

∣∣
≤

∑
j∈T −(i)

max
0≤s≤t

∣∣Aj(s)−A′
j(s)

∣∣ ,
where the first inequality holds by (49), and the second inequality holds by the inductive hypothesis.
This concludes the inductive step.

C.3.3 Proof of Proposition 5

Fix t ≥ 0. For any node i ∈ A, define βi : Rn
≥0 → R≥0 such that for every q ∈ Rn

≥0, βi(q) denotes
the matching rate from i to its children under TTP at time t+ 1 assuming q(t) = q, i.e.,

βi(q) ≜
∑

j∈C(i)

∆Dm(j,i)(t+ 1).

Notice that βi(q) = 0 for every leaf node i. By the matching rule of TTP, for any node i ∈ A, one
has the recursion

βi(q) = min

λi,
∑

j∈C(i)

(
λj + qj − βj(q)

) , (50)

reflecting the fact that i can receive at most λi units of flow from its children, and each child j has
at most λj + qj − βj(q) units of flow available to send upward.
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Recall the definition of ϵi’s given in (7). By Lemma 3, we also have

ϵi = λi −
∑

j∈C(i)

ϵj , (51)

for every i ∈ A. For every q ∈ Rn
≥0, define

F (q) ≜ βr(q) + 2
∑
i∈A0

βi(q). (52)

By construction, F (q) is exactly the total one-step decrease of Φ(q) under TTP: a match between
r and its child reduces Φ(q) by 1, while a match between two over-demanded nodes reduces Φ(q)
by 2. Hence, to prove (16), since the total arrival to over-demanded queues at time t+ 1 is 1− λr,
it suffices to show

F (q) ≥ 1− λr +min {ϵ,Φ(q)} (53)

for every q ∈ Rn
≥0.

The proof of (53) relies on two properties of F (·) provided in the following lemma.

Lemma 26. The following properties hold for F (·):

1. If Φ(q) ≤ ϵ, then F (q) = 1− λr +Φ(q).

2. F (·) is non-decreasing, i.e., F (q′) ≤ F (q) if q′ ≤ q, where the comparison is made entry-wise.

To see that Lemma 26 implies (53), on one hand, if Φ(q) ≤ ϵ, then F (q) = 1 − λr + Φ(q) by
Property 1. On the other hand, if Φ(q) > ϵ, consider an arbitrary q′ ∈ Rn

≥0 satisfying Φ(q′) = ϵ
and q′ ≤ q, and it holds that

F (q) ≥ F (q′) = 1− λr + ϵ,

where the inequality holds by Property 2, and the equality holds by Property 1.
It remains to prove Lemma 26.

Proof of Lemma 26. We prove the desired properties separately.

Proof of Property 1. Fix q ∈ Rn
≥0 with Φ(q) ≤ ϵ. We first show that for every i ∈ A,

βi(q) =
∑

j∈C(i)

ϵj −
∑

j∈T −(i)

(−1)d(i,j)qj , (54)

where d(i, j) is the (unweighted) distance between i and j. By definition, if i is a leaf node, then
βi(q) = 0 and C(i) = T −(i) = ∅, so (54) holds. Assume for induction that (54) holds for all children
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j ∈ C(i) of a non-leaf node i. Then,

βi(q) = min

λi,
∑

j∈C(i)

(λj + qj − βj(q))


= min

λi,
∑

j∈C(i)

λj + qj −
∑

k∈C(j)

ϵk +
∑

k∈T −(j)

(−1)d(j,k)qk


= min

λi,
∑

j∈C(i)

ϵj −
∑

j∈T −(i)

(−1)d(i,j)qj


=
∑

j∈C(i)

ϵj −
∑

j∈T −(i)

(−1)d(i,j)qj ,

where the first equality holds by (50), the second equality holds by the induction hypothesis, the
third equality holds by (51), and the last equality holds since

∑
j∈T −(i)(−1)d(i,j)qj ≤

∑
j∈T −(i) qj ≤

Φ(q) ≤ ϵ and λi −
∑

j∈C(i) ϵj = ϵi ≥ ϵ. This completes the inductive step.
Next, we apply (54) to show Property 1. By the definition of F (·),

F (q) = βr(q) + 2
∑
i∈A0

βi(q)

=
∑

j∈C(r)

ϵj −
∑

j∈T −(r)

(−1)d(r,j)qj + 2
∑
i∈A0

 ∑
j∈C(i)

ϵj −
∑

j∈T −(i)

(−1)d(i,j)qj


=

 ∑
j∈C(r)

ϵj + 2
∑
i∈A0

∑
j∈C(i)

ϵj

−
 ∑

j∈T −(r)

(−1)d(r,j)qj + 2
∑
i∈A0

∑
j∈T −(i)

(−1)d(i,j)qj

 ,

where the second equality holds by (54). We bound the above two terms separately. Firstly,∑
j∈C(r)

ϵj + 2
∑
i∈A0

∑
j∈C(i)

ϵj
(a)
= 2

∑
j∈A0

ϵj −
∑

j∈C(r)

ϵj
(b)
= 1− λr,

where (a) holds because the sum over children of all i ∈ A0 counts every node in A0 \ C(r) exactly
once, so

∑
i∈A0

∑
j∈C(i) ϵj =

∑
j∈A0

ϵj −
∑

j∈C(r) ϵj ; (b) holds because summing (51) over A0 yields∑
i∈A0

λi =
∑

i∈A0
ϵi + (

∑
i∈A0

ϵi −
∑

j∈C(r) ϵj), and we know
∑

i∈A0
λi = 1− λr. Moreover,∑

j∈T −(r)

(−1)d(r,j)qj + 2
∑
i∈A0

∑
j∈T −(i)

(−1)d(i,j)qj

=
∑
i∈A0

qi

2
∑

j:i∈T −(j)

(−1)d(j,i) − (−1)d(r,i)
 = −

∑
i∈A0

qi = −Φ(q),

where the second equality holds since 2
∑k

i=1(−1)i − (−1)k = −1 for any k ∈ Z>0. Combining the
above three displayed equations concludes Property 1.

51



Proof of Property 2. For all nodes i ∈ A and q ∈ Rn
≥0, define Ti(q) as the total matching rate

in the subtree rooted at i:

Ti(q) ≜
∑

j∈T (i)

βj(q).

We show by induction that Ti(·) is non-decreasing for every node i ∈ A, which implies Property 2
since F (q) = Tr(q) +

∑
i∈C(r) Ti(q).

For all leaf nodes i and q ∈ Rn
≥0, Ti(q) = βi(q) = 0, implying that Ti(·) is non-decreasing.

Consider a non-leaf node i, and assume for induction that Tj(·) is non-decreasing for every j ∈
T −(i). We now show that Ti(·) is also non-decreasing. Notice that

Ti(q) =
∑

j∈T (i)

βj(q) = βi(q) +
∑

j∈C(i)

Tj(q) = min

λi,
∑

j∈C(i)

(λj + qj − βj(q))

+
∑

j∈C(i)

Tj(Q),

where the last equality holds by (50). Using the identity min{A,B}+ C = min{A+ C,B + C}:

Ti(q) = min

λi +
∑

j∈C(i)

Tj(q),
∑

j∈C(i)

(λj + qj + (Tj(q)− βj(q)))


= min

λi +
∑

j∈C(i)

Tj(q),
∑

j∈C(i)

λj + qj +
∑

k∈C(j)

Tk(q)

 ,

and the monotonicity of Ti(·) follows immediately from the monotonicity of Tj(·) for j ∈ C(i) and
Tk(·) for k ∈ C(j).

C.3.4 Proof of Proposition 6

To establish that V (Q) is a geometric Lyapunov function for (Q(t))t≥0, we utilize Proposition 3,
which requires verifying two conditions: (1) Φ has a negative truncated drift, and (2) the second-
order exponential moment L3 is bounded.

Step 1: negative truncated drift. We first show that for any initial state x ∈ Rn
≥0 with

Φ(x) > ϵK:

Ex [max {−ϵK,Φ(Q(K))− Φ(x)}] ≤ −5(dr + 1)2nϵ−1 . (55)

Let (q(t))t≥0 be the deterministic queue-length trajectory induced by TTP under the fluid
arrival starting from q(0) = x. For any x ∈ Rn

≥0, we bound the positive part of the drift:

[Φ(Q(K))− Φ(x) + ϵK]+ ≤ [Φ(Q(K))− Φ(q(K))]+ + [Φ(q(K))− Φ(x) + ϵK]+

(a)

≤ |Φ(Q(K))− Φ(q(K))|+ 1{Φ(x)≤ϵK}ϵK

(b)

≤ 2(dr + 1)
∑
i∈A

sup
0≤t≤K

|Ai(t)− λit|+ 1{Φ(x)≤ϵK}ϵK , (56)

where (a) holds because

Φ(q(K))− Φ(x) + ϵK ≤ [Φ(x)− ϵK]+ − Φ(x) + ϵK ≤ 1{Φ(x)≤ϵK}ϵK , (57)
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in view of Proposition 5; and (b) holds by Proposition 4.
Hence, for any initial state x with Φ(x) > ϵK, the indicator term is zero, and we get

Ex [max {−ϵK,Φ(Q(K))− Φ(x)}] = −ϵK + Ex

[
[Φ(Q(K))− Φ(x) + ϵK]+

]
(a)

≤ −ϵK + 2(dr + 1)
∑
i∈A

sup
0≤t≤K

|Ai(t)− λit|

(b)

≤ −ϵK + 2(dr + 1) ·
(
2
√
n
√
K
)

(c)
=
√
t0ϵ

−1
(
−
√
t0 + 4(dr + 1)

√
n
)

(d)
= −5(dr + 1)2nϵ−1 ,

where (a) holds by (56); (b) holds by (20) in Lemma 8; (c) holds by K = t0ϵ
−2; (d) holds by

substituting t0 = 25(dr + 1)2n.

Step 2: bounding the second-order exponential moment. Next, we verify the condition
from Proposition 3 involving the second-order exponential moment L3. Specifically, we show that
for small enough θ:

(ϵθ) · L3(ϵK, ϵθ,K) ≤ 5(dr + 1)2nϵ−1 . (58)

Recall the definition of L3 in (13) and t0 = 25(dr + 1)2n. It holds that

L3(ϵK, ϵθ,K) = sup
x∈Rn

≥0

Ex

[
(max{−ϵK,Φ(Q(K))− Φ(x)})2 · exp

(
ϵθ(Φ(Q(K))− Φ(x))+

)]
(a)

≤ E

(2ϵK + 2(dr + 1)
∑
i∈A

sup
0≤t≤K

|Ai(t)− λit|

)2

exp

(
ϵθ · 2(dr + 1)

∑
i∈A

sup
0≤t≤K

|Ai(t)− λit|

)
(b)

≤ 8ϵ2K2E

[
exp

(
ϵθ · 2(dr + 1)

∑
i∈A

sup
0≤t≤K

|Ai(t)− λit|

)]

+ 8(dr + 1)2E

(∑
i∈A

sup
0≤t≤K

|Ai(t)− λit|

)2

exp

(
ϵθ · 2(dr + 1)

∑
i∈A

sup
0≤t≤K

|Ai(t)− λit|

)
(c)

≤ 8ϵ2K2 · C2

(
2ϵθ
√
K(dr + 1)

)
+ 8(dr + 1)2K · C3

(
2ϵθ
√
K(dr + 1)

)
, (59)

where (a) holds because for any state x,

|max{−ϵK,Φ(Q(K))− Φ(x)}| =
∣∣−ϵK + [Φ(Q(K))− Φ(x) + ϵK]+

∣∣
≤ ϵK + [Φ(Q(K))− Φ(x) + ϵK]+

≤ ϵK +

(
ϵK + 2(dr + 1)

∑
i∈A

sup
0≤t≤K

|Ai(t)− λit|

)

by (56); (b) holds because (a+ b)2 ≤ 2a2 + 2b2; (c) holds by Lemma 8 with the scaling
√
K.

In the following, we aim to find the range of θ that satisfies

L3

(
t0ϵ

−1, ϵθ, t0ϵ
−2
)
≤ 5(dr + 1)2nϵ−1

ϵθ
.
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Rearranging, it suffices to show

θ ≤ 5(dr + 1)2nϵ−2

L3(t0ϵ−1, ϵθ, t0ϵ−2)
≜ ∆. (60)

Recall the upper bound for L3(ϵK, ϵθ, t0ϵ
−2) derived in (59) with coefficients substituted (K =

t0ϵ
−2, so ϵK = t0ϵ

−1 and ϵ
√
K =

√
t0):

L3(ϵK, ϵθ, t0ϵ
−2) ≤ 8t20ϵ

−2C2(θ̃) + 8(dr + 1)2t0ϵ
−2C3(θ̃) ,

where θ̃ ≜ 2θ
√
t0(dr + 1). Substituting this into ∆:

∆ =
5(dr + 1)2nϵ−2

ϵ−2
[
8t20C2(θ̃) + 8(dr + 1)2t0C3(θ̃)

] =
5(dr + 1)2n

8t20C2(θ̃) + 8(dr + 1)2t0C3(θ̃)
. (61)

Substituting t0 = 25(dr + 1)2n:

• 8t20 = 8(625(dr + 1)4n2) = 5000(dr + 1)4n2,

• 8(dr + 1)2t0 = 8(dr + 1)2(25(dr + 1)2n) = 200(dr + 1)4n.

We assume θ = κ
(dr+1)2n

for some κ > 0 determined later. Then θ̃ = 10κ√
n
. Substituting C2(θ̃) =

e20κ+O(1/n) and C3(θ̃) = 4ne20κ+O(1/n), the inequality θ ≤ ∆ becomes:

κ

(dr + 1)2n
≤ 5(dr + 1)2n

(dr + 1)4n
[
5000ne20κ+O(1/n) + 200(4ne20κ+O(1/n))

] .
Simplifying:

κ ≤ 5

5000e20κ+O(1/n) + 800e20κ+O(1/n)
=

1

1160e20κ+O(1/n)
.

Since f(κ) = 1160κe20κ is increasing, there exist constants n0 > 0 and κ0 > 0 such that for all
n ≥ n0 and θ ≤ κ0

(dr+1)2n
, the condition holds.

Conclusion. Conditions (55) and (58) satisfy the requirements of Proposition 3 with drift mag-
nitude γ = 5(dr + 1)2nϵ−1. Thus, V (Q) is a geometric Lyapunov function for (Q(t))t≥0 with drift
size parameter 1− ϵθ

2 γ = 1− 5
2(dr + 1)2nθ.

C.3.5 Proof of Theorem 3

By Proposition 6, under the true arrival, V (Q) = exp(ϵθ ·Φ(Q)) is a geometric Lyapunov function
with geometric drift size parameter: 1 − 5

2(dr + 1)2nθ, drift time parameter: K = t0ϵ
−2, and

exception parameter exp(θt0). By Proposition 5, we get

Eπ

[
eϵθ·Φ(Q)

]
≤ 2eθt0ϕ(K)

5(dr + 1)2nθ
, (62)

where ϕ(K) ≜ supx∈Rn
≥0

Ex

[
eϵθ(Φ(Q(K))−Φ(x))

]
is the maximum expected overshoot. We upper

bound ϕ(K) by

ϕ(K) = sup
x∈Rn

≥0

Ex

[
eϵθ(Φ(Q(K))−Φ(x)+ϵK)

]
· e−ϵ2θK ≤ sup

x∈Rn
≥0

Ex

[
eϵθ[Φ(Q(K))−Φ(x)+ϵK]+

]
· e−ϵ2θK

≤ E

[
exp

(
2ϵθ(dr + 1)

∑
i∈A

sup
0≤t≤K

|Ai(t)− λit|

)]
≤ C2(θ̃) ,
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where the second inequality holds by (56), and θ̃ ≜ 2(dr + 1)
√
t0θ. By Jensen’s inequality,

Eπ[Φ(Q)] ≤ 1

ϵθ
logEπ[e

ϵθ·Φ(Q)]

≤ 1

ϵθ

[
logC2(θ̃) + log

(
2eθt0

5(dr + 1)2nθ

)]
≤
(
n(dr + 1)2

ϵκ0

)[(
20κ0 +

50κ20
n

)
+

(
25κ0 + log

2

5κ0

)]
︸ ︷︷ ︸

O(1)

= O

(
nd2r
ϵ

)
, (63)

where the second inequality holds by (62), and the last inequality holds because by t0 = 25(dr+1)2n
and θ = κ0(dr + 1)−2n−1 from Proposition 6, we get

1

ϵθ
=

1

ϵ
· (dr + 1)2n

κ0
=

1

κ0
· n(dr + 1)2

ϵ
,

θt0 =
(

κ0
(dr+1)2n

) (
25(dr + 1)2n

)
= 25κ0, and θ̃ = 2(dr + 1) (5(dr + 1)

√
n)
(

κ0
(dr+1)2n

)
= 10κ0√

n
, then

logC2(θ̃) = 2
√
n

(
10κ0√

n

)
+

1

2

(
10κ0√

n

)2

= 20κ0 +
50κ20
n

,

and

log

(
2eθt0

5(dr + 1)2nθ

)
= log

(
2e25κ0

5κ0

)
= 25κ0 + log

(
2

5κ0

)
.

Finally, TTP is consistent by Proposition 7, and hence applying Lemma 2 yields

E

∑
i∈A0

Q(t)

 ≤ 2Eπ

∑
i∈A0

Q(0)

 = 2Eπ[Φ(Q)] ≤ O

(
nd2r
ϵ

)

for every t ≥ 0, where the last inequality holds by (63). Combining the above displayed equation
with Lemma 1 concludes the proof.
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