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Abstract

We study how to optimally match agents in a dynamic matching market with heteroge-

neous match cardinalities and values. A network topology determines the feasible matches in

the market. In general, a fundamental trade-off exists between short-term value—which calls

for performing matches frequently—and long-term value—which calls, sometimes, for delaying

match decisions in order to perform better matches.

We find that in networks that satisfy a general position condition, the tension between short-

and long-term value is limited, and a simple periodic clearing policy (nearly) maximizes the total

match value simultaneously at all times. Central to our results is the general position gap ϵ; a

proxy for capacity slack in the market. With the exception of trivial cases, no policy can achieve

an all-time regret that is smaller, in terms of order, than ϵ−1. We achieve this lower bound with

a policy, which periodically resolves a natural matching integer linear program, provided that

the delay between resolving periods is of the order of ϵ−1. Examples illustrate the necessity of

some delay to alleviate the tension between short- and long-term value.

1 Introduction

We study a centralized dynamic matching market, in which agents arrive stochastically over time,

matches can be multilateral, and match values are heterogeneous. Uncertainty in agents’ arrivals

creates an inherent trade-off between short- and long-term allocative efficiency; being overly greedy

may compromise opportunities to perform valuable matches in the future.
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Carpooling platforms delay match decisions to better pool passengers with each other, yet

passengers may wait longer to be served. Kidney exchange platforms, which arrange exchanges

between incompatible patient-donor pairs, can form a match as soon as it becomes feasible, or

wait for more pairs in order to generate exchanges that yield more life years from transplants.1

Programs in the Netherlands, the United Kingdom, Canada and Australia form matches every 3 or

4 months (Ferrari et al., 2014; Malik and Cole, 2014; Johnson et al., 2008). In contrast, programs

in the United States have gradually moved towards daily matching; this practice raised concerns

that matching frequently may harm efficiency (Gentry and Segev, 2015).

To better understand this tension between short and long-term objectives, and to speak to

the reality described above, we seek to address the following questions: (i) How do we formally

measure this tension, and how does it depend on the market primitives? (ii) How should a planner

match agents dynamically in order to achieve the best possible balance between short- and long-

term objectives? (iii) If a periodic matching policy is applied, what is the right delay between

consecutive match decisions?

We introduce a queueing perspective to study these questions and model the market as a

network of matching queues. In our model agents arrive sequentially to the market, and the type of

an arrival is drawn from a known distribution over finitely many types. A given network topology

determines the set of feasible matches. Matches include two or more agent types, and match values

are heterogeneous (see, e.g., Figure 1). We impose no a priori assumptions on the underlying

network topology; it may be acyclic, or it may include cycles. A matching policy determines when

and which matches to perform, and agents leave the market once they are matched.

λ1 = 2λ λ2 = λ+ δ λ3 = λ

r1 = 1 r2 = 2

λ3 λ4 λ5 λ6 λ7λ2λ1

r2 r3 r4r1

Figure 1: Matching network graphs. Circles and rectangles represent agent types and matches, respectively. Agents
arrive sequentially, and an arrival is of type−i with probability λi. When match−m is performed once, a value of
rm is collected. (LEFT) A network with 3 agent types and 2 (two-way) matches. The leftmost match includes one
agent of each of types 1 and 2, and generates a value of r1. (RIGHT) A network with 7 agent types and 4 matches.
The (multi-way) match yields a value of r2 and includes one agent from each of 4 different agent types.

To study the trade-off between short- and long-term allocative efficiency, we use a notion of

1For example, fewer tissue type mismatches or better age matches may increase life years from transplants.
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all-time regret. Given a fixed horizon of length t, the maximum allocative efficiency is achieved by

waiting until time t, and only then forming an optimal set of matches. The static planning problem

is a deterministic counterpart of this upper bound where the arrivals are replaced by their means.

For the network in Figure 1(LEFT) with 0 < δ < λ, the deterministic counterpart performs δ many

match−1 and λ many match−2 per time unit; and it collects a match value of r1δ + r2λ per time

unit. The regret of a matching policy at a fixed time t, measures the difference between this upper

bound and the value generated by the matching policy by time t; the all-time regret measures the

supremum over all times t. In general, a smaller regret in short-term may yield larger regret in

long-term; in that case the all-time regret will be large. If it is possible to have a small regret

simultaneously at all times, then the tension between short-term and long-term is moot.

We prove that this is indeed possible for matching networks that satisfy a general position

condition. General position is nothing but the requirement that the deterministic counterpart has

a non-degenerate optimal solution. In a matching network, the non-degeneracy implies (loosely

speaking) some “imbalance” in the market.

Before describing the main results, it will be helpful to discuss a couple of examples. Consider

the network in Figure 1(LEFT), where 0 < δ < λ. Because r2 > r1, the deterministic counterpart

matches λ many type−2 agents with type−3 agents, and matches the remaining δ > 0 many

with type−1 agents. Now consider the dynamic (stochastic) market, where the planner adopts a

periodic clearing policy: every τ time periods, the planner solves a static matching problem given

the number of agents in each queue. In expectation, there are δτ more arrivals of agent type−2

than those of type−3. But the smaller the δ, the greater the probability that the number of type−2

arrivals will not suffice to match all type−3 arrivals during the period of length τ . Conversely, the

greater the δ, the greater the probability that we will be able to match all arriving type−3 agents,

in alignment with the deterministic upper bound. If δ = 0 (in violation of the general position

condition), regret inevitably—regardless of τ—grows over time; see Section 2.

For fixed δ the greater the τ , the greater the probability that the number of type−2 arrivals over

the inter-action delay τ exceeds that of type−3. This τ is a design choice and, in some networks,

this choice matters. Consider the network in Figure 2, and assume that the planner is using a

periodic clearing policy with an inter-action delay τ . When δ = 0.05, we note that the regret grows

when τ = 5, but it is bounded when τ = 20. When δ = 0.01, the period length τ = 20 no longer

maintains a bounded regret, but τ = 100 does. To maintain a bounded all-time regret, τ cannot

be too small. Picking τ to be too large is also a problem, since we might be unnecessarily giving
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up on short-term value.

λ1 = 0.1 λ2 = 0.2 λ3 = 0.25 λ4 = 0.15 + δ λ5 = 0.3− δ

r1 = 0.75 r2 = 1 r3 = 1.5 r4 = 1
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Figure 2: The regret of our proposed periodic clearing policy applied to the network on the left. Both the period
length τ and the parameter δ are varied. For any δ ≤ 0.05, the optimal static solution is (0.1, 0.1, 0.15, δ) for the
four matches, respectively. The plotted regret is based on 10 replications. Note that since the x−axis corresponds to
decision epochs, the time horizon is 4000 · τ .

Main contributions. First, we introduce the general position gap, denoted by ϵ, that quantifies

the (in)stability of the network, and it is characterized explicitly in terms of the network primitives.

Loosely speaking, this quantity captures the “inherent thickness” in the market via the imbalance

in the arrival probabilities. Mathematically, the general position gap is the minimum over sizes of

matches and unmatched agents in each queue based on the optimal static solution. For the network

in Figure 1(LEFT), ϵ = min{δ, λ, 2λ− δ}; in Figure 2, ϵ = min{0.1, 0.1, 0.15, δ, 0.3− 2δ}.

Second, we show that with the exception of trivial cases, no matching policy (periodic clearing

or not) can achieve an all-time regret that is smaller, in terms of order, than ϵ−1. We introduce

a periodic resolving policy that achieves this lower bound and therefore, not only maintains the

regret uniformly bounded simultaneously at all times, but also achieves the optimal scaling for

the all-time regret. At each clearing period, one resolves a simple integer linear program that

maximizes the total match value given the state of the market (the number of agents in each

queue). The lower bound is attained by this policy, provided that the inter-action delay, i.e., the

length between two consecutive resolving periods is of the order of ϵ−1. In other words, under a

carefully designed resolving policy, the market is just thick enough at each clearing period (without

unnecessary waiting) to achieve high allocative efficiency at all times. Overall, the general position

gap prescribes a precise operational measure for market “thickness”; it is inversely proportional to
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the attainable regret and the ideal clearing period length.

Delaying actions, we show, is generally necessary to maintain bounded regret at all times.

Consider, for example, the network in Figure 1(RIGHT), and suppose that match−2 is a high-

value match. This introduces a complementarity that prevents greedy-like policies to perform well;

acting greedily (over) utilizes other matches abundantly at the expense of match−2; see Example

3.2.

Finally, we prove that in acyclic matching networks, the general position gap ϵ can be formalized

as a measure of capacity slack (the excess of capacity above demand) akin to similar notions in

standard queueing networks. In these networks, the optimal static solution effectively “labels” a

subset of agent types as servers (and their total arrival rate as capacity) and the remaining set of

agent types as customers (and their total arrival rate as demand).

1.1 Related literature

Value maximization, as well as the tension between value and delay, have received significant

attention in the matching literature. At the risk of being a bit coarse, we divide the related

literature into two streams characterized by their modeling language.

The first stream is based on random graphs, where agents arrive over time and form an edge

with existing agents with some exogenous probabilities. A large subset of this stream, motivated

by kidney exchange, is concerned with dynamic matching under homogeneous values—maximizing

the total match value is the same, in this case, as maximizing the total number of matched agents.

Anderson et al. (2017); Ashlagi et al. (2019b) focus on the average waiting time of agents and

show that greedy policies achieve near optimality as the exogenous match probability tends to

zero, which suggests that waiting to thicken the market is not beneficial. Ashlagi et al. (2018);

Akbarpour et al. (2020) explicitly model agents’ departures (abandonments) and find that greedy

policies maximize the total number of matches in large markets. If departure times (agents’ patience

levels) are observed, matching just before departures yields an improvement over greedy matching

(Akbarpour et al., 2020).

A growing literature considers dynamic matching under heterogeneous match values. Blanchet

et al. (2020) studies a two-sided market model with departures, in which the value from matching

a single buyer to a single seller (a two-way match) is drawn from a given distribution. The optimal

frequency of match decisions depends on the tail of the value distribution, where the policies that

are studied include population and utility threshold policies. In our model, there is a finite number
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of match types (rather than a continuum), and the feasibility of matches is determined, instead, by

a given network topology. In addition, our model allows for matches to include more than two agent

types (multi-way matches). Ashlagi et al. (2019a); Collina et al. (2020) also identify the need of

delaying actions in a model with departures. Dynamic policies based on heuristics for continuation

values were studied in the context of kidney exchange (Dickerson et al., 2016; Li et al., 2019).

Other papers in this stream consider incentives and decentralized decisions Leshno (2011);

Arnosti and Shi (2019); Baccara et al. (2020). Our model is of a central decision maker, and in that

sense we are closer to Dickerson et al. (2012), which develop a heuristic to approximate the full

dynamic program and overcomes the “curse of dimensionality”, and to Karp et al. (1990); Goel and

Mehta (2008); Feldman et al. (2009); Manshadi et al. (2012), which benchmark against an offline

upper bound.

Our work uses the modeling language of queueing networks rather than that of random graphs.

It considers environments, in which match values are not binary, and the number of agent and

match types are finite.

Within the queueing literature, a subset of papers focuses on performance evaluation of specific

important policies; e.g., see Caldentey et al. (2009); Adan et al. (2018); Afeche et al. (2021) and the

references therein. Several recent papers succeeded in reducing the control problem’s complexity by

relying on heavy-traffic approximations (Gurvich and Ward, 2014; Bušic and Meyn, 2014; Nazari

and Stolyar, 2019). Gurvich and Ward (2014); Bušic and Meyn (2014) study the minimization of

heterogeneous delay costs. For homogeneous delay costs, Ünver (2010) establishes the optimality

of a greedy policy, if all matches are two-way (involving one donor and one recipient, in the context

of kidney exchange); it also underscores the value of delaying match decisions in networks with

multi-way matches. Nazari and Stolyar (2019), like us, study value maximization, but focuses on

the long-run average value. Our main focus is on finite horizon optimization and on the trade-

off between short- and long-term value. The policy we devise is, in particular, long-run average

optimal.

Aouad and Saritac (2020) study matching networks when agent departures are allowed. These

departures make the problem more difficult, as any delay between actions may sacrifice value when

agents are sufficiently impatient. The authors introduce algorithms that achieve, in the long-run,

a constant percent of the upper bound (the optimality gap, then, grows with the horizon). By

considering a more limited family of networks and assuming that agents are patient, we make

headway in the refined understanding of matching networks that, we believe, can subsequently
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inform the design of algorithms for networks with departures; we revisit this in the concluding

remarks.

This paper is also related to recent work on achieving constant regret in dynamic resource

allocation problems; e.g., see Bumpensanti and Wang (2020); Vera et al. (2020); Vera and Banerjee

(2021). In these papers, it is proved that policies, which resolve at each arrival an intuitive linear

program, can achieve constant regret in the online packing context, where an initial supply of

inventory is depleted over a finite horizon by arriving requests. Requests must be accepted or

rejected on the spot (there is no queue), and the criterion is to maximize the value collected

by the end of the horizon. Of conceptual importance is Jasin and Kumar (2012), where a non-

degeneracy assumption supports the optimality of such greedy resolving policies in the packing

setting. While the differences are significant, both dynamic matching and online packing problems

can be conceptually framed as specific instances of online linear programming; e.g., see Li and Ye

(2020) and the references therein.

Notation. For real numbers x and y, we use x ∧ y := min{x, y}, (x)+ := max{0, x} and (x)− :=

max{0,−x}. We follow the accepted meaning of little o, big O and big Ω. For example at = Ω(bt)

for all t > 0 (for non-negative at, bt) means that lim inft→∞ at/bt > 0. We write [1, n] to denote the

set of positive integers {1, 2, . . . , n}.

2 Model

Matching network and dynamics. There is a finite set of agent types A = {1, 2, . . . , n} and a

finite set of matchesM = {1, . . . , d}. Each match m ∈ M corresponds to a subset of at least two

agent types. We denote by A(m) the set of agent types participating in match−m. The network

topology is given by a matching matrix M ∈ {0, 1}n×d, where Mim = 1 if and only if i ∈ A(m). We

assume that each agent type is participating in at least one match.

Agents arrive in discrete time following a multinomial distribution: at each time t ∈ N, an

arrival is of type−i with probability λi > 0, where
∑

i∈A λi = 1. Match−m is feasible at time

t, if there is at least one agent type−i present in the market at time t, for all i ∈ A(m). When

match−m is performed once, it includes one agent of each type in A(m), and generates a value of

rm > 0. We refer to the tuple G := (M,λ, r) as the matching network.

To track the state of the market, we maintain a queue for each agent type, and agents join

their type-dedicated queues upon arrival. All queues are empty at t = 0, and we denote by At
i the
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number of arrivals to queue−i by time t. Matches are performed instantaneously (after which the

matched agents leave the market), and we denote the pre-match queue-length vector at time t by

Qt. Note that at most mini∈A(m)Q
t
i many matches of m ∈M can be performed at time t.

Matching network graph. The network topology is a hypergraph, where each agent type is

a vertex and each match is a collection of vertices—which are the agent types that participate

in the match. We represent this hypergraph by a simple bipartite graph, where agent types and

matches are the vertices, and there is an edge between agent type−i and match−m if and only

if i ∈ A(m). We refer to this bipartite graph as the matching network graph, and we denote this

graph by G as a slight abuse of notation. Figure 1 is the first instance of multiple matching network

graphs that we will use throughout the paper. In the figures, circles and rectangles represent agent

types and matches, respectively, and we indicate the arrival probabilities and match values in their

corresponding shapes.

Performance measure. A matching policy maps histories of arrivals and performed matches to

a (possibly empty) set of matches and determines how many times each of these matches will be

performed at each time t. Such a policy can be represented by a right-continuous with left limits

non-anticipative increasing process Dm := (Dt
m, t ≥ 0), where Dt

m is the total number of times

match−m is performed by time t; ∆Dt
m := Dt

m − Dt−
m is then the number of times match−m is

performed at time t. An admissible matching policy D must satisfy the following:

Qt = At −MDt− for all t > 0. (1)

Denote by Π the set of all admissible matching policies. We add the superscript D on expectations

to make explicit the dependence on the policy. We use Qt+ to denote the post-match queue-length

vector at time t, i.e., Qt+ = Qt −M∆Dt
m.

The expected total value collected by time t, under a matching policy D, is given by

RD,t := ED[r ·Dt].

The optimal value for fixed t, R∗,t := maxD∈ΠRD,t, is trivially attained by the ultimate batching

policy, which takes no action until time t, and performs matches according to an optimal solution

of the (static) weighted matching problem at time t. The optimal value R∗,t is then the expectation
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of the following static problem:

R∗,t = E


max r · y

s.t. My ≤ At

y ∈ Zd
≥0

 .

Conceptually, it is useful to think of R∗,· as tracking the total collected value of a decision maker

that makes decisions continuously, but the decision maker is allowed, at all times, to correct past

decisions (unmatch some agents and match new ones); this is a hindsight upper bound. A matching

policy is hindsight optimal if it is, at all t, almost as good as this upper bound.

Definition 2.1 (hindsight optimality). A matching policy D is hindsight optimal if

R∗,t −RD,t = O(1) for all t > 0,

which implies, in particular, RD,t/R∗,t = 1−O(1/t) for all t > 0.

This notion of optimality—with its focus on the total collected value at all times—allows us

to concentrate on the tension between short- and long- term value; whether it is possible to act

frequently and remain near-optimal at all times. Explicit delay penalties naturally encourage

taking frequent actions. We explicitly model delay penalties/holding costs in §6 and show that our

proposed matching policies achieve near-optimality in that case as well.

Remark 2.1. Hindsight optimality implies optimality under other criteria. For instance, given a

finite horizon T , a hindsight optimal matching policy makes a constant number of “mistakes” that

does not grow with the horizon, i.e., R∗,T − RD,T = O(1). In particular, the policy is optimal in

the long-run average sense, since

R∗,T −RD,T

R∗,T = O(1/T )→ 0 as T →∞,

with a convergence rate of 1/T .

Another instance is a discounted infinite horizon model, where the discounted collected value

with a discount factor β ∈ (0, 1) under a matching policy D is defined as

RD
β := ED

[ ∞∑
t=0

βt(r ·∆Dt)

]
.
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Let R∗
β := maxD∈ΠRD

β and RU
β := (1− β)

∑∞
t=0 β

tR∗,t. Then for any matching policy D, we have

RU
β ≥ R∗

β ≥ RD
β . A hindsight optimal matching policy D satisfies RU

β − RD
β = O(1), and in

particular, R∗
β −RD

β = O(1). Since R∗
β = Ω(1/(1− β)), the relative error satisfies

R∗
β −RD

β

R∗
β

= O(1− β),

and shrinks as the effective horizon becomes longer (as β ↑ 1).

2.1 The static-planning problem (SPP) and the general position condition

A natural upper bound for the optimal value R∗,t is given by the following optimization problem,

where stochastic arrivals are replaced by their rates:

R∗,t = E


max r · y

s.t. My ≤ At

y ∈ Zd
≥0

 ≤
max r · x

s.t. Mx ≤ λt

x ∈ Rd
≥0.

(2)

An optimal solution x∗m of the problem on the right-hand side of (2) provides a first-order proxy for

optimal match rate of match−m. The inequality in (2) simply follows from relaxing the integrality

constraints and applying Jensen’s inequality. With the change of variables z = x/t, we arrive at a

deterministic relaxation, which we write in standard form as

max r · z

s.t. Mz + s = λ

z ∈ Rd
≥0, s ∈ Rn

≥0.

(SPP)

We refer to this formulation as the static-planning problem (SPP). Given an optimal solution

(z∗, s∗) of (SPP), z∗m is the (per period) number of times match−m is performed under the optimal

solution, whereas s∗j corresponds to the leftovers (slack) added to queue−j per period. We partition

the set of matches and queues as follows:

M+ := {m ∈M : z∗m > 0}, M0 :=M\M+, Q+ := {j ∈ A : s∗j > 0} and Q0 := A\Q+,

where M+ is the set of active matches, M0 is the set of redundant matches, Q+ is the set of

under-demanded (non-empty) queues, and Q0 is the set of over-demanded (empty) queues.
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We expect “good” policies to be consistent with this partition. It should perform those matches

with z∗m > 0, but avoid performing the redundant matches. Similarly, over-demanded/empty

queues should be as empty as possible, while those queues with s∗j > 0 should grow with time. We

formalize this intuition in §4.

A simple property of the optimal solution of (SPP) determines, as we will prove, whether it is

possible to achieve hindsight optimality.

Definition 2.2 (general position). A matching network G satisfies the general position condition

(GP) if (SPP) has a unique non-degenerate optimal solution (z∗, s∗), i.e., all n basic variables in

this solution are strictly positive.

GP is straightforward to verify. Non-degeneracy means that |M+| + |Q+| = n and is, thus,

easy to verify by inspection. As to uniqueness, if the dual of (SPP) has a non-degenerate optimal

solution, then the primal has a unique optimal solution by complementary slackness.

Uniqueness is mathematically useful and comes at no practical restriction. When there are

multiple solutions, a small perturbation of the match value vector r ← r+O(1/T )—where T is the

horizon length in consideration—guarantees uniqueness. This does not affect hindsight optimality

because this perturbation, for any t ≤ T , changes the benchmark R∗,t at most by a constant.

General position is in fact necessary to maintain a uniformly bounded regret. To see this,

consider the network in Figure 3(LEFT). Observe that match−2 is used by the ultimate batching

policy (that achieves the optimal value) for any fixed time t > 0 only if At
2 > At

1. Since λ1 = λ2,

whether At
1 ≥ At

2 or At
1 < At

2 is discovered only late in the horizon. Thus, any optimal policy for

a fixed t, must withhold performing match−2 until time t. This inevitably means suboptimality

for subintervals [0, s], for any s > 0 sufficiently smaller than t (say s = t/2). Therefore, a policy D

that is optimal for s = t/2 must have R∗,t −RD,t = Ω(
√
t). Figure 3(RIGHT) illustrates this, and

a formal proof appears in the appendix.

The growing regret in Figure 3 stems from having equal arrival probabilities of agent types 1

and 2. Consider some perturbation on λ2 now. Intuitively, the larger the difference between λ2 and

λ1, the earlier one can decide whether to perform match−2, and one should also expect a smaller

regret. The general position gap, which is defined next, captures the inherent imbalance in the

network, or the “distance” from degeneracy.

Definition 2.3 (general position gap). Suppose that the matching network G satisfies GP. We
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Figure 3: (LEFT) A network that violates GP. (RIGHT) The policy D performs one batched optimal solution at
time t/2, and then another at time t. R∗,t is obtained by the ultimate batching policy at time t; we vary t (the time
horizon is scaled down by 103). This captures a regret that is of the order of

√
t: optimizing total value at time s < t

necessitates a O(
√
t) optimality gap at time t.

define the general position gap as

ϵ = min
m∈M+

z∗m ∧ min
j∈Q+

s∗j .

The general position gap ϵ is, by definition, strictly positive, and since λ is a probability vector,

z∗m, s∗j < 1 for all m ∈ M+ and j ∈ Q+ so that 0 < ϵ < 1. Mathematically, the general position

captures the minimum entry among basic variables. For example in Figure 3, if one increases λ2

by a sufficiently small constant δ > 0 and decreases λ1 by δ, then GP holds, where (SPP) has a

unique optimal solution z∗ = (1/3− δ, 2δ) and s∗ = (0, 0, 1/3− 2δ) with ϵ = 2δ.

For a large family of matching networks, ϵ can be thought of as a measure of capacity slack; see

§5. Loosely speaking, the larger the general position gap ϵ, the larger the region of queue-lengths in

the dynamic system that will enable performing “correct” matches by acting more frequently. As

we will show later, the general position gap will be inversely proportional to the achievable regret

and the desirable delay between decision epochs.
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3 Main results

Our proposed matching policy—the exhaustive resolving policy—is a periodic clearing policy, where

matches are performed at each decision epoch following an optimal solution of a natural linear

integer program.

1. Pre-processing and removal of redundant matches. Solve (SPP) and identify the setM0. All

redundant matches are removed from the network and never used (Dt
m = 0 for all t > 0 and

m ∈M0).
2 This decomposes the network into (possibly) multiple connected components, and

the policy is applied to each component separately. Alternatively, the policy can be applied

directly to the original network with an extra constraint that the matches in M0 are never

used.

2. Decision epochs. Matches are performed only at decision epochs

tk = kτ, k ∈ N,

where τ ∈ N is the inter-action delay.

3. Solving a linear (integer) program. At each decision epoch tk, perform z∗m(Qtk) many matches

for all m ∈M+, where

z∗(Qtk) ∈ argmax r · z

s.t. Mz ≤ Qtk

z ∈ Zd
≥0,

(3)

where, we recall, Qtk
i is the pre-match length of queue−i: the number of agents in queue−i

right before the matches are performed at time tk.

Observe that immediately after a decision epoch tk, no feasible matches remain to perform;

otherwise one could increase the objective value in (3) by forming an additional match.

In our analysis, we will assume that immediately after the matches are performed, all remaining

unmatched agents from queues j ∈ Q+ (under-demanded queues) are removed. This is done for

mathematical exposition and without loss of generality; we will show that these removals are not

necessary; see Proof of Theorem 3.1 in Appendix D. Arguably, removals are practically reasonable

in order to prevent agents of these types from waiting indefinitely.

2That we remove the matches in M0 from the network is, in fact, necessary; see Remark 3.1.
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Definition 3.1 (trivial networks). A matching network that satisfies GP is trivial if the general

position gap equals the arrival probability of some agent type. That is, for some i ∈ A,

ϵ = min
m∈M+

z∗m ∧ min
j∈Q+

s∗j = λi.

In trivial networks, as illustrated in Figure 4, it is possible to keep the regret small at all times

(in particular, in terms of order, smaller than Ω(ϵ−1)).

λ2 = 2/15

λ4 = 9/15

λ1 = 3/15 λ3 = 1/15

r2 = 2r1 = 4 r3 = 1

Figure 4: An example of a trivial network, where (SPP) has a unique optimal solution z∗ = (3/15, 2/15, 1/15) and
s∗ = (0, 0, 0, 3/15) so that ϵ = z∗3 = 1/15 = λ3. Since λ4 > λ1 + λ2 + λ3, queue−4 will grow with time regardless of
the matching policy. After some initial time t0, queue−4 will be non-empty with probability close to 1. In particular,
we will be able to immediately match any arriving agents of type 1, 2, or 3. The regret is 0 at all large enough times
t.

Theorem 3.1 (hindsight optimality). Assume that G satisfies GP, and let ϵ be the GP gap. Then,

there exists a matching policy D such that

R∗,t −RD,t ≤ Γϵ−1 for all t > 0, (Upper bound)

where Γ > 0 is a constant that may depend on n, d,M , and r (but not λ or ϵ). This performance is

achieved by the exhaustive resolving policy with an inter-action delay τ = ⌈κϵ−1⌉ = Θ(ϵ−1), where

κ > 0 is some constant that does not depend on ϵ.

If the network is non-trivial, any matching policy D has

sup
t>0

(R∗,t −RD,t) ≥ γϵ−1, (Lower bound)

where γ > 0 is a constant that may depend on n, d,M , and r (but not λ or ϵ).

Our main theorem states that an inter-action delay proportional to ϵ−1 is sufficient to achieve

the optimal regret scaling. By the lower bound result, a smaller τ cannot improve this achieved

14



regret scaling. It can, however, make it worse; see Example 3.1. Picking τ larger, in terms of order,

compromises the regret; for example with τ = Θ(ϵ−2), the regret scales with ϵ−2 ≫ ϵ−1. This is

because just before a decision epoch, there are (of the order of) ϵ−2 unmatched agents waiting in

queues. Thus, at that point in time the regret is of the order of ϵ−2.

Queueing-intuition for the lower bound. The proof of the lower bound appears in Appendix

E. We provide here some intuition using a simple example. Consider the network in Figure 5.

Let us pretend that upon arrival, an agent type−2 is lost if it is not used to form a match with

queue−1, and match−1 is performed otherwise. Then queue−1 behaves like a single-server queue

with arrival rate λ1, and service rate λ2 = λ1 + ϵ; the utilization is ρ = λ1/(λ1 + ϵ). Then the

stationary mean queue-length of queue−1 is given by

ρ

1− ρ
=

λ1

ϵ
∼ 1

ϵ
.

Thus, while the upper bound (SPP) makes queue−1 empty at all times, we will, in the stochastic

system, have of the order of ϵ−1 unmatched type−1 agents, which will constitute an unrealized

value of ∼ r1/ϵ. The main challenge in formalizing this intuition is that not only the arrivals to

queue−2 are not “lost” if not immediately matched, but also that we must allow the matching

policy to be arbitrary.

λ1 λ2 = λ1 + ϵ λ3 = 2ϵ

r1 = 2 r2 = 1

Figure 5: A simple network for the lower bound intuition.

3.1 Discussion

On the policy ingredients. The exhaustive resolving policy utilizes (SPP) to identify which

matches to avoid and what delay to impose between decision epochs. In particular, our results re-

quire the knowledge of the parameters λ and r. Next, we discuss the importance of these ingredients

under our resolving policy.

Remark 3.1 (pre-removal of redundant matches). Avoiding matches in M0 is necessary for the

resolving policy to achieve hindsight optimality. To see this consider the network in Figure 6.
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Independent of the size of τ , the figure showcases the linear growth (in t) of the regret R∗,t−RD,t.

In this example, (SPP) has z∗4 = 0, but the static problem (3) uses it occasionally (even if not

frequently). Regardless of the fixed τ , there is a positive probability (that decreases with τ , but is

constant once τ is fixed) that both queues 4 and 5 will be non-empty at a decision epoch, where

queues 3 and 6 will be empty. In such a case, our exhaustive resolving policy will perform match−4.

This is a “mistake”, and it will be repeated at a fixed frequency.

The next two examples illustrate the necessity of some delay between decision epochs under our

resolving policy (regardless of how ties are broken).

Example 3.1 (the frequency of resolving in two-way networks). As briefly discussed in the intro-

duction, Figure 2 considers our resolving policy for a two-way network, and captures the regret for

multiple values of the “batching” parameter τ ∈ {5, 20, 100}. Even in this simple (two-way) net-

work, τ cannot be too small; if it is too small, the performance of the resolving policy is suboptimal.

Example 3.2 (the necessity of some delay in multi-way networks). In Figure 7, the tuple G =

(M,λ, r) satisfies GP. Since match−1 has a relatively high value, it is important to utilize agent

types 1, 2, 4, and 6 towards performing this match. Any greedy policy “fails”, since agents of

types 2, 4, and 6 (required to perform match−1) “disappear” before they can be used to perform

match−1. For instance, since λ7 = 64λ ≫ λ6 = 32λ, there will be (after some initial transient

horizon) available agents waiting to be matched in queue−7, with high probability. Under any

greedy policy, any arriving type−6 agent will then immediately be matched to an agent of type

7, and disappear. Our resolving policy with a suitable inter-action delay prevents this, and per-

forms match−1 sufficiently many; see its constant regret in Figure 7(BOTTOM LEFT). In Figure

7(BOTTOM RIGHT), we can see that resolving too frequently results in a large regret.

We do not offer a precise recipe to pick τ . However, an initial pre-processing step based on

simulations can help to fine tune this parameter; a simple heuristic would be to initialize τ to ϵ−1

and keep increasing it “slightly” as long as the regret grows. Note that such simulations, like the

exhaustive resolving policy, rely on knowing the arrival probabilities and match values.

Further comments. In some applications, the main objective is to maximize the total number

of matched agents, i.e., the value of a match equals the number of agent types participating in the

match. Similar arguments to those in Example 3.2 imply that in multi-way networks, even such
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Figure 6: Resolving without removing all matches in M0 does not achieve hindsight optimality. The network
in this figure exhibits a regret that grows linearly with time. (TOP LEFT) The performance of the exhaustive
resolving policy without removing match−4 with τ = 20. The solid line represents the optimal value of (SPP) (where
the arrivals are replaced with their expectations) scaled with t, and the dashed line represents the optimal match
value given the actual arrival realizations (not in expectation). (TOP RIGHT) The performance without removing
match−4 with τ = 200. The regret grows slower, but it nevertheless grows. (BOTTOM LEFT) The performance
with removing match−4 and τ = 20. (BOTTOM RIGHT) The performance with removing match−4 and τ = 200.

a simple cardinality maximizing objective requires delaying match decisions to achieve hindsight

optimality; this can be illustrated by extending the network in Figure 7 by adding new agent types

with relatively large arrival probabilities to align match values with their cardinalities. Finally, in

§5, we identify an alternative periodic clearing policy, which is also hindsight optimal for a large
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Figure 7: (TOP LEFT) A (multi-way) network, where λ is chosen so that
∑

i∈A λi = 1. (TOP RIGHT) The
percent optimality gap (regret) as a function of the inter-action delay τ . For each τ , the reported gap is an average
of 1000 replications. With τ = 1 (acting every period), the gap is as high as 60%; it decreases to less than 1.5% with
a delay of τ = 20. (BOTTOM LEFT) Hindsight optimality: the regret as a function of decision epochs with τ = 20.
Note that a regret of 300 corresponds to not performing match−1 three times throughout the horizon. (BOTTOM
RIGHT) The queues of type i ∈ Q+ = {3, 5, 7} grow linearly with time. All the queues in Q0 remain bounded in
expectation, and these queues are not visible in this scale.

family of networks.
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4 Upper bound: The regret of exhaustive resolving

In this section, we prove the first part of our main result Theorem 3.1, that is the exhaustive

resolving policy achieves the desired regret O(ϵ−1). We first present in Lemma 4.1 a sufficient

condition for a matching policy to be hindsight optimal. Next, we present structural properties

of the optimal solution of (SPP), which will be useful to analyze the dynamic system including

proving Lemma 4.1. Finally, the proof uses Lyapunov arguments to establish that the conditions

of Lemma 4.1 hold.

4.1 Optimality test

The following lemma provides a sufficient condition for hindsight optimality. Essentially, the non-

degeneracy provided by GP guarantees that any matching policy, whose set of bounded queues

coincides with the set of over-demanded queues (the set Q0) is hindsight optimal.

Lemma 4.1 (optimality test). Suppose that GP holds. Let (z∗, s∗) be the unique non-degenerate

optimal solution of (SPP). Then a matching policy D that

(i) does not reject any agents of type i ∈ Q0,

(ii) does not perform any matches inM0, i.e., D
t
m = 0 for all m ∈M0 and for all t > 0, and

(iii) has ED[Qt
i] = O(ϵ−1) for all i ∈ Q0 and for all t > 0,

is hindsight optimal, and R∗,t −RD,t = O(ϵ−1) for all t > 0.

Lemma 4.1 translates Theorem 3.1 to the constancy—uniformly in t—of the queues in the

set Q0. Indeed, if the policy avoids redundant matches and keeps the expected lengths of over-

demanded queues sufficiently “small” at all times, then hindsight optimality is achieved.

4.2 The structure of the optimal solution of (SPP).

The optimality test utilizes properties of the optimal solution of (SPP), which will be key to our

analysis for the dynamic system. Without loss of generality, assume that M+ = {1, 2, ..., d − ϱ}

and Q+ = {d−ϱ+1, d−ϱ+2, ..., n}, where we let ϱ := |M0|. Then the optimal basis matrix takes

the form

B =

 M0 0

M+ I

 ,
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where M0 has the rows of M corresponding to the queues in Q0, M
+ has the remaining n− d+ ϱ

rows, and B has the columns corresponding toM+ and Q+ in order; I is an (n−d+ϱ)×(n−d+ϱ)

identity matrix, and 0 is a (d−ϱ)× (n−d+ϱ) zero matrix. Being the basis matrix, B is invertible,

and Y = B−1 has the following form

B−1 = Y :=

 Y 0 0

Y + I

 ,

where [Y 0, 0] is a (d− ϱ)× n matrix and [Y +, I] is an (n− d+ ϱ)× n matrix, where

1. mth row of [Y 0, 0] is ym for each m ∈M+, and

2. jth row of [Y +, I] is yd−ϱ+j for each d− ϱ+ j ∈ Q+.

In turn, the optimal solution of (SPP) can be written as

 z∗M+

s∗Q+

 = B−1λ = Y λ,

which implies

z∗m = ymλ > 0 for all m ∈M+, and s∗j = yjλ > 0 for all j ∈ Q+, (4)

where strict inequalities follow from the non-degeneracy of (z∗, s∗) under GP. Finally, since G is a

finite matching network, i.e., n <∞, we must have maxi,j∈[1,n] |Yi,j | ≤ ω, for some constant ω > 0,

where ω may depend on n and M . The matrix Y (and in turn, the vectors ym’s and yj ’s) can be

explicitly constructed for a special family of networks; see §5.

Non-degeneracy implies (e.g., see (Bertsimas and Tsitsiklis, 1997, Section 5.1)), that the same

basis remains optimal for any λ̃ > 0 such that λ̃ = λ+ ζ, where ∥ζ∥∞ ≤ ζ0 for all sufficiently small

ζ0 > 0. The dual of (SPP) will also be useful in what follows. It readily follows that under GP,

θi := (
∑

m∈M+
rmym)i ≥ 0, i ∈ A, are the corresponding optimal dual variables. In particular,

uniqueness of (z∗, s∗) implies θi > 0 for all i ∈ Q0.

4.3 Lyapunov arguments for analyzing the exhaustive resolving policy

Since the first two conditions of Lemma 4.1 are clearly satisfied under the exhaustive resolving

policy, our main focus in this section to provide tools to analyze the third condition. Intuitively, we
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want to show that whenever the queue-length of an over-demanded queue hits a certain threshold,

the exhaustive resolving policy is able to “pull back” the length below the threshold in the next

decision epoch, as the non-degeneracy provided by GP allows the exhaustive resolving policy to

approximately “mimic” the optimal solution of (SPP).

Drift arguments, as the one we are going to use, are common in the study of stochastic networks

and queues. The following result (e.g., see (Glynn and Zeevi, 2008, Corollary 4)) is useful to bound

stationary expectations of Markov processes.

Lemma 4.2. Let X = (Xt : t ≥ 0) be a discrete-time S-valued Markov chain with transition kernel

P , and suppose f : S → R is non-negative. If there exists a non-negative function g : S → R and

a constant c for which

∫
S
P (x, dy)g(y)− g(x) ≤ −f(x) + c for all x ∈ S, (5)

then ∫
S
π(dx)f(x) ≤ c, (6)

for any stationary distribution π of X.

The challenge lies in identifying a suitable Lyapunov function g—a “norm” of the total process—

that decreases when the queues in Q0 are large. This is non-trivial, and relies in subtle ways

on the network structure and the detailed analysis of the optimal solution of (SPP). As we will

formulate our Lyapunov function next, the construction is based on the dual of (SPP), in particular

our Lyapunov function originates from a weighted sum of the queue-lengths, where weights are

determined by the dual variables.

Minimal Markov chain notation is needed before we proceed. Under the exhaustive resolving

policy, the process (Qtk , k ∈ N) is clearly a Markov chain. We let Pq{·} be the probability law of

this Markov chain initialized at q ∈ Zn
≥0, and we write Eq[·] for the corresponding expectation.

Since the policy is applied separately to each connected component of the network (recall that

all matches inM0 are removed from the network), without loss of generality, we assume that there

is a single component, i.e., M0 = ∅. Recall that at each decision period tk = kτ , k ∈ N, the
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exhaustive resolving policy solves the following linear integer program

max r · z

s.t. Mz + s = Qtk

z ∈ Zd
≥0, s ∈ Zn

≥0,

where Qtk is the pre-match queue-length vector. Since Y is invertible and yjM = 0 for all j ∈ Q+,

this linear program can be rewritten as

max r · z

s.t. ymMz + yms = ymQtk for all m ∈M+

yjs = yjQtk for all j ∈ Q+

z ∈ Zd
≥0, s ∈ Zn

≥0.

Recalling that ymMz = zm for all m ∈ M+, we have zm = ym(Qtk − s) for all m ∈ M+. Hence,

the linear program above can be rewritten as

max
∑

m∈M+

rmym(Qtk − s)

s.t. zm + yms = ymQtk for all m ∈M+

yjs = yjQtk for all j ∈ Q+

z ∈ Zd
≥0, s ∈ Zn

≥0.

Finally, since (ym)j = 0 for all m ∈M+ and for all j ∈ Q+, we obtain, with u := Qtk , the following

equivalent problem (in terms of optimizers)

h∗(u) := min
∑

i∈Q0

∑
m∈M+

(rmym)isi

s.t. zm + yms = ymu for all m ∈M+

yjs = yju for all j ∈ Q+

z ∈ Zd
≥0, s ∈ Zn

≥0.

(7)

For ease of exposition, without loss of generality, we initialize the pre-match queue-length vector
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at q ∈ Zn
≥0, and let q+ ∈ Zn

≥0 be the post-match queue-length vector right after the exhaustive

resolving policy is executed at time 0. Thus, with this notation we have Qτ = q+ + Aτ , i.e., Qτ is

the pre-match queue-length vector at time τ .

The following proposition provides bounds on the drift, which will allow us to apply the optimal-

ity test (Lemma 4.1) and complete the proof of the upper bound. The proof is given in Appendix

B.

Proposition 4.1. Take τ = ⌈κϵ−1⌉ for some constant κ > 0 (not dependent on ϵ). Then, the

process h∗(Qtk), with h∗(·) as in (7), decreases in expectation:

Eq [h
∗(Qτ )− h∗(q)] ≤ −γ +

Γ

ϵ
1{h∗(q)≤B}, (8)

where B, γ,Γ > 0 do not depend on ϵ. Consequently, there exist constants c1, c2 > 0, not dependent

on ϵ, such that the process L(Qtk) := eh
∗(Qtk ) also decreases in expectation:

Eq[L(Qτ )− L(q)] ≤ −γ

2
L(q) + c1e

c2τ1{h∗(q)≤B}. (9)

Observe that inequality (9) follows from a standard mechanism, which derives an exponential

Lyapunov function from a given linear one. Note that Lemma (4.1) immediately implies that under

the Markov chain’s unique stationary distribution, which we denote by π, we have

Eπ[L(Q0)] ≤ 2c1
γ

ec2τ , (10)

where Q0 ∼ π. Since τ = ⌈κϵ−1⌉, by Jensen’s inequality we have

Eπ[h
∗(Q0)] = O(ϵ−1). (11)

The reason behind considering an exponential Lyapunov function is to be able to use geometric

recurrence of the process (Qtk , k ∈ N), which is crucial to prove that E[
∑

i∈Q0
Qt

i] = O(ϵ−1) for all

t > 0, not only in the stationary distribution. The proof of the upper bound in Theorem 3.1 can

be found in Appendix D.

23



5 (SPP)-acyclicity and the general position gap

In this section, we focus on a special family of matching networks to extend some of our main

results, as well as providing more intuition about the general position gap ϵ.

Definition 5.1 ((SPP)-acyclic networks). Suppose that G satisfies GP and let (z∗, s∗) be the

unique optimal solution of (SPP). The (SPP)-residual graph is obtained by removing all redundant

matches m ∈ M0 (with z∗m = 0) from G. We say that G is (SPP)-acyclic, if the (SPP)-residual

graph is acyclic.

If G (the bipartite graph representation of the hypergraph) is acyclic itself, then G is trivially

(SPP)-acyclic. More interestingly, this is also the case if G itself is a simple bipartite graph (where

only even cycles are allowed) with two-way matches only.

Lemma 5.1 (two-way two-sided networks). Suppose that G satisfies GP. Let (z∗, s∗) be the unique

non-degenerate optimal solution of (SPP). If |A(m)| = 2 for all m ∈M (all matches are two-way),

and G is bipartite (any cycle in G contains an even number of matches), then G is (SPP)-acyclic.

It is important to notice that other than the network structure, (SPP)-acyclicity also depends

on the optimal solution of (SPP). In turn, whether this notion of acyclicity holds or not depends

not only on the matching matrix M , but also on the arrival probability vector λ and the match

value vector r. Because of this dependence, one should not expect other sufficient conditions as

simple and insightful as the one in Lemma 5.1.

5.1 The general position gap in (SPP)-acyclic networks

As discussed in Section 2, the general position gap can be intuitively thought of as a measure of

slack in the network. In (SPP)-acyclic networks, as the next lemma shows, this slack can be viewed

as an imbalance between arrival probabilities.

Lemma 5.2. Assume that G is (SPP)-acyclic. If for every two subsets A1 ̸= A2 ⊆ A, we have

∑
i∈A1

λi ̸=
∑
j∈A2

λj , (12)

then (SPP) has a non-degenerate optimal basic feasible solution3.

3The opposite is not generally true.
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If the arrival rates are drawn from a continuous distribution, then (12) holds almost surely.

Intuitively, (GP) is then likely to hold in any practical setting.

We can be more precise compared to Lemma 5.2 regarding mapping the general position gap

to an intuitive notion of slack. Recall that the optimal solution of (SPP) is given simply in terms

of the inverse of the basis matrix as in (4). Therefore, the first step in that direction is to explicitly

construct the inverse matrix Y of the optimal basis matrix. For some intuition of this construction

when G is (SPP)-acyclic, consider the network in Figure 2. Under the optimal solution, all slack

variables are 0, except s∗5 > 0. Then it must be that z∗1 = λ1 (all type−1 agents are matched).

Then match−2 uses the leftovers of type−2 agents, and z∗2 = λ2 − z∗1 = λ2 − λ1; match−3 uses

the leftovers (those that are not used towards match−2) of type−3 agents, and z∗3 = λ3 − z∗2 =

λ3 − λ2 + λ1. Defining row vectors y1 = [1, 0, 0, 0, 0], y2 = [−1, 1, 0, 0, 0], y3 = [1,−1, 1, 0, 0], and

y4 = [−1, 1,−1, 1, 0], we have the representation z∗m = ymλ for all m ∈M+ = {1, 2, 3, 4}. Similarly,

we have s∗5 = λ5 − z∗4 = y5λ, where y5 = [1,−1, 1,−1, 1] (note that Q+ = {5}). This demonstrates

an instance for the general construction of the optimal solution of (SPP).

Theorem 5.1 (explicit optimal solution of (SPP)). Assume that GP holds and G is (SPP)-acyclic.

Let (z∗, s∗) be the unique non-degenerate optimal solution of (SPP) withM+ = {m ∈M : z∗m > 0}

and Q+ = {j ∈ A : s∗j > 0}. Then there exist |M+| vectors ym ∈ {−1, 0, 1}n and |Q+| vectors

yj ∈ {−1, 0, 1}n such that

z∗m(λ) := z∗m = ymλ > 0 for all m ∈M+, and s∗j (λ) := s∗j = yjλ > 0 for all j ∈ Q+.

Any right-hand side λ > 0 with ylλ > 0 for all l ∈ M+ ∪ Q+, induces the optimal solution

(z∗(λ), s∗(λ)).

Recall that, also in general matching networks (not necessarily (SPP)-acyclic), the optimal

solution of (SPP) takes the form as in Theorem 5.1, where ym’s and yj ’s are the rows of the inverse

of the optimal basis matrix; see §4.2. What is new here is that when G is (SPP)-acyclic, the matrix

Y can be constructed explicitly; all entries of Y are either −1, 0, or −1. We prove Theorem 5.1

and provide the explicit construction of Y in Appendix C.

Without the uniqueness requirement, Lemma 5.2 has a sufficient condition for GP that requires

the sum of total arrival probabilities—for any two subsets A1 and A2—to be different. But it should

be clear that this requirement is too stringent. For instance in Figure 2, we would still have GP if

λ2 = λ4 = 0.2, but that would clearly violate the requirement of Lemma 5.2. In other words, it is
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clear that the sets A1 and A2 need not be arbitrary.

Let us revisit the network in Figure 2. The “capacity” available to agent type−1 is λ2. If

λ1 > λ2, then queue−1 must grow with time under any matching policy. Similarly, the capacity

available for agent types 2 and 4 combined is at most λ1+λ3+λ5; the capacity slack for these two

types is then λ1 + λ3 + λ5 − (λ2 + λ4). More generally, for each subset of agent types S ⊂ A, we

can define N (S) to be the set of agent types participating in a match with some agent type i ∈ S,

and so that N (S) ∩ S = ∅. The capacity slack for S is then ϵ′(S) := |
∑

i∈N (S) λi −
∑

j∈S λj |, and

the network capacity slack is the minimum over all subsets:

ϵ′ := min
S⊂A

ϵ′(S) = min
S⊆A

∣∣∣∣∣∣
∑

i∈N (S)

λi −
∑
j∈S

λj

∣∣∣∣∣∣
This would be an intuitive notion of capacity slack, but it is still too stringent. It turns out

that we do not need to consider all subsets S as we do in defining ϵ′. The explicit construction

of the inverse matrix Y identifies for us the “relevant” subsets. Indeed, take the vector ym as in

Theorem 5.1 for some m ∈M+. Let

A+(ym) := {i ∈ A : (ym)i = 1} and A−(ym) := {i ∈ A : (ym)i = −1}.

Then we have

ymλ =
∑

i∈A+(ym)

λi −
∑

i∈A−(ym)

λi,

and

ϵ = min
ℓ∈M+∪Q+

 ∑
i∈A+(yℓ)

λi −
∑

i∈A−(yℓ)

λi

 .

In turn, for (SPP)-acyclic matching networks, we can see the general position gap as a measure of

capacity slack, where for each ℓ ∈ M+ ∪ Q+, it identifies, via yℓ, a subset of agent types (those in

A−(yℓ)) as “customers”, and a subset of agent types (those in A+(yℓ)) as the “servers” who serve

these agent types. It then compares the total capacity to the total input.

Once ϵ is understood as a capacity slack, it is intuitively clear that achievable regret should

depend on this measure. Having a large capacity slack increases the decision maker’s ability to

control the dynamic system and perform matches that are aligned with the deterministic counter-

26



part (SPP). Theorem 3.1 establishes that it is feasible to achieve a regret of the order of ϵ−1, and

a smaller regret is not attainable.

The following remark shows that the explicit construction of the inverse matrix Y when G

is (SPP)-acyclic allows us to give a more explicit characterization of the inter-action delay τ in

Theorem 3.1 by showing that τ linearly depends on the number of agent types n. The proof reveals

how the negative drift (γ) in Proposition 4.1 depends on Y , and in turn this dependence determines

τ .

Remark 5.1. An immediate extension of Theorem 3.1 when G is (SPP)-acyclic is that the ex-

haustive resolving policy with κ = Θ(n) (so that τ = Θ(nϵ−1)) is hindsight optimal. This directly

follows from the proof of Propositon 4.1 by noticing that ω = 1, since any entry of the surplus

vector yj is in {−1, 0, 1} for all l ∈ M+ ∪ Q+, where ω is an upper bound for the maximum entry

in Y , i.e., maxi,j∈[1,n] |Yi,j | ≤ ω.

5.2 An alternative hindsight optimal policy

Note that the match value vector plays a key role in determining the basic feasible activities under

(SPP), as well as the match decisions that the exhaustive resolving policy makes. It is a natural

question to ask whether good policies must further take into account the match value vector when

determining which matches to perform. We are now ready to propose an alternative policy to the

exhaustive resolving policy, which is also hindsight optimal when G is (SPP)-acyclic, where this

policy does not take into account the match value vector while making match decisions. Consider

the following periodic matching policy D′, which acts exactly the same as the exhaustive resolving

policy, except at each decision epoch tk, we perform z∗m(Qtk) many matches for all m ∈M+, where

z∗(Qtk) ∈ argmin
∑

i∈Q0
Q

t+k
i

s.t. Mz ≤ Qtk

z ∈ Zd
≥0,

(13)

where Qt+k ∈ Zn
≥0 is the post-match queue-length vector right after the policy is executed at time

tk. That is, we minimize the number of agents waiting in over-demanded queues at each decision

epoch.

Theorem 5.2. Let G be an (SPP)-acyclic network that satisfies GP, and let ϵ be the GP gap.

Then D′ is hindsight optimal with the inter-action delay τ = ⌈κϵ−1⌉ = Θ(ϵ−1), where κ > 0 is some
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constant that does not depend on ϵ:

R∗,t −RD′,t ≤ Γϵ−1 for all t > 0,

where Γ > 0 is a constant that may depend on n, d,M , and r (but not λ or ϵ).

The proof depends in explicit ways on the acyclicity; see Appendix C. We do not know if this

is true for cyclic networks, where the main challenge is that we do not know how to explicitly

construct the inverse matrix Y of the optimal basis matrix.

6 Delay costs

The problem of minimizing delay penalties/holding costs has been studied in earlier papers, e.g.,

see Gurvich and Ward (2014); Bušic and Meyn (2014). This is a complex question in general, but

our results have some immediate implications on optimal delay cost scaling.

Suppose at the end of each period (after observing an arrival and possibly performing matches),

we incur a delay cost ci per type−i agent in the system. Then the expected total delay cost by time

t under a matching policy D is given by

HD,t := ED

[
t∑

u=1

c ·Qu+

]
.

The minimal delay cost for fixed t, is then H∗,t := minD∈ΠHD,t. Given delay costs ci’s, define

r = cM ; rm is an “indirect” value per match−m. Note that each time that we perform match−m

once, the total delay cost decreases by rm =
∑

i∈A(m) ci. With this notation, let us rewrite HD,t as

follows:

HD,t = ED

[
t∑

u=1

c ·Qu+

]
= ED

[
t∑

u=1

c ·Au − c ·MDu

]
= E

[
t∑

u=1

c ·Au

]
− E

[
t∑

u=1

r ·Du

]

= E

[
t∑

u=1

c ·Au

]
−

t∑
u=1

RD,u.

In turn,

H∗,t = ED

[
t∑

u=1

c ·Au

]
−max

D∈Π

t∑
u=1

RD,u,
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and

HD,t −H∗,t = max
π∈Π

t∑
u=1

Rπ,u −
t∑

u=1

RD,u

≤
t∑

u=1

R∗,u −
t∑

u=1

RD,u

Under GP, our resolving policy achieves R∗,t −RD,t = O(ϵ−1) for all t > 0, so that

HD,t = H∗,t +O
(
tϵ−1

)
for all t > 0,

or, in terms of time-average delay cost, we have

1

t
HD,t =

1

t
H∗,t +O(ϵ−1).

In the proof of the lower bound in Theorem 3.1 (see Appendix E), we show that under any matching

policy, for any t0 such that
∑

i∈Q0
Qt0

i ≤ ϵ−1, there exists some constant B > 0 (that does not

depend on ϵ) such that
∑

i∈Q0
E[Qt0+Bϵ−2

i ] = Ω(ϵ−1). Because of this “constant shift”, the set of all

times when the expected sum of lengths of over-demanded queues is Ω(ϵ−1) has a positive density,

i.e.,

lim inf
T→∞

∑T
t=1 1{E[

∑
i∈Q0

Qt
i] = Ω(ϵ−1)}

T
> 0.

In turn, it must be the case that H∗,t = Ω(tϵ−1). We conclude then that the exhaustive resolving

policy achieves the optimal delay scaling.

Allowing objectives that combine both match value and delay cost is an interesting but non-

trivial research direction. Given network parameters c, r and M , consider (SPP) twice, once with

r and once with r′ = cM (the match value maximization reformulation of the delay cost minimiza-

tion). If these two instances have the same optimal basis, then it follows—from Theorem 3.1 and

the delay cost derivations above—that our resolving policy achieves ϵ−1 all time regret for the total

(match value minus scaled delay cost) objective RD,t − t−1HD,t.

If the two bases are different, however, a possible conflict arises between match value maximiza-

tion and delay cost minimization. Whether hindsight optimality is attainable in this setting and,

if yes, whether it is achievable by simple policies is a worthy goal for future work.
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7 Concluding remarks

The problem of dynamically allocating resources to incoming requests is central to operations

research. In this paper, we seek to contribute to the study of those special settings, where requests

have a dual role as demand and capacity. Our results speak to the tension between short- and

long-term value maximization. We characterize networks, where maximal values can be achieved

in long-term without sacrificing maximal values in short-term. We prescribe an appealingly simple

dynamic matching policy that achieves this desired balance. We find that the best optimality gap

that can be achieved simultaneously at all times, is inversely proportional to the general position

gap ϵ. The proposed periodic resolving policy achieves this optimality gap, where the delay between

consecutive decision periods is of the order of ϵ−1. The general position gap in acyclic networks

can be interpreted as an inherent thickness or capacity slack in the network.

This work raises several research directions. One direction is allowing objectives that combine

both value and holding costs. Another direction is incorporating agents’ departures. The tension

between value and delay is endogenized when agents depart (abandon) without being matched.

Without departures, delaying actions increases the collected value. With departures, this is no

longer the case. The upper bound—given by infinitely patient agents and a decision maker that

waits until the end of the horizon—is not generally achievable.

This paper reveals the importance of the general position gap in the study of departures. Since

over-demanded queue lengths are of the order of ϵ−1 (so are their corresponding waiting times), if

the patience is of the order of magnitude longer than this, the results should not change. In other

words, the smaller the general position gap, the more patient we need agents to be in order to

achieve hindsight optimality.
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A Proofs from Section 2

Proof for Figure 3. Some pre-processing is useful here. It is a simple observation that under

the optimal total value for a fixed t—realizable by taking no action until time t, and performing

matches according to an optimal solution at that point—the optimal solution is given by setting

z∗,t1 := At
1 ∧At

2 and z∗,t2 := At
3 ∧ (At

2 −At
1)

+, (14)

so that

R∗,t = r1E[At
1 ∧At

2] + r2E[At
3 ∧ (At

2 −At
1)

+]. (15)

Fix t̄ = αt for some α ∈ (0, 1). Then the optimal value at time t̄ is the same as (15), where

t is replaced by t̄. We also use the following simple fact: the multivariate central limit theorem

(Van der Vaart, 1998, Example 2.1.8) applied to the multinomial random vector (At
1, A

t
2, A

t
3) and

the continuity of the map (x1, x2, x3)→ (x1 − x2) implies that

P{At
1 −At

2 ≤ δ
√
t} → Φ(δ/

√
λ) as t→∞, (16)

where Φ is the cumulative density function of the standard normal distribution and λ = λ1 = λ2 =

λ3.

The proof now proceeds in two parts. We first show that any non-anticipating policy D that has

the optimality guarantee R∗,t−RD,t = o(
√
t), must not perform match−2 until late in the horizon.

A consequence of this, as we will show, is that any such policy must have R∗,t −RD,t = Ω(
√
t).

Part 1. Fix α = 1/2 (t̄ = t/2). The proof works for any α ∈ (0, 1), but fixing α = 1/2 is

notationally convenient. For some κ > 0, let

τ := inf
{
t ≥ 0 : Dt

2 ≥ κ
√
t
}

be the first time that match−2 is used more than κ
√
t times and fix δ > 2κ. The following two

events are independent under any non-anticipating policy D:

E1 := {τ ≤ t̄} ∩
{
At̄

1 −At̄
2 ≥ −

δ

2

√
t

}
and E2 :=

{
A

(t̄,t]
1 −A

(t̄,t]
2 ≥ δ

√
t
}
,

where we introduced the increments A
(s,u]
i := Au

i − As
i . On the intersection E1 ∩ E2, we have
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At
1 − At

2 ≥ δ
√
t/2, which implies At

1 ≥ At
2. Per (14), we have z∗,t2 = 0 so that, on this event, the

policy loses (r1 − r2)κ
√
t relative to the optimal. Using the independence of the events E1 and E2,

we have

R∗,t −RD,t ≥ (r1 − r2)κ
√
tP{E1}P{E2}.

Per (16), P{E2} → η > 0 as t→∞. For the policy to have R∗,t −RD,t = o(
√
t), it must be that

P{E1} → 0 as t→∞.

Then for large enough t, we have

P{τ ≤ t̄} ≤ P{E1}+ P
{
Aτ

1 −Aτ
2 ≤ −

δ

2

√
t

}
≤ 2η.

Recalling the definition of τ , this shows that a policy D that has RD,t−R∗,t = o(
√
t) will, with

high probability, avoid perfoming match−2 until time t̄ = t/2.

Part 2. We claim that any policy that has the optimality guarantee o(
√
t̄ ) at time t̄, must have

for all κ > 0 that

P{Qt̄
2 > κ

√
t̄ } → 0 as t→∞. (17)

Before proving this claim, we will use the arguments in part 1 to show that if a policy is value

optimal at t, we contradict (17), and thus the near optimality at t̄.

Since Du
1 ≤ Au

1 for all u > 0, we have that for all s ≤ τ ,

Qs
2 = As

2 −Ds
1 −Ds

2 ≥ (As
2 −As

1 − κ
√
t)+.

Thus,

P{Qt̄
2 > κ

√
t̄ } ≥ P{(At

2 −At
1 − κ

√
t)+ ≥ κ

√
t̄, τ > t̄ }

≥ P{(At
2 −At

1 − κ
√
t)+ ≥ κ

√
t̄ } − P{τ ≤ t̄ }

≥ P{(At
2 −At

1 − κ
√
t)+ ≥ κ

√
t̄ } − 2η.

Per (16), there exists γ = γ(κ) such that P{At̄
2 − At̄

1 ≥ 2κ
√
t)} ≥ γ. Choosing δ large (and

consequently, η small) so that 2η < γ, we have that a policy that has R∗,t −RD,t = o(
√
t), must

also have P{Qt̄
2 > κ

√
t̄ } ≥ (γ − 2η) > 0 for all t > 0, which contradicts (17) as required.
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To conclude the proof, it remains to show that any policy with the suboptimality gap o(
√
t̄ ),

must have P{Qt̄
2 ≥ κ

√
t̄ } → 0 as t (and then t̄ = t/2) →∞.

Because Du
1 +Du

2 ≤ Au
2 for all u > 0, we have Qu

1 +Qu
3 = Au

1 +Au
3 −Du

1 −Du
2 ≥ Au

1 +Au
3 −Au

2

for all u > 0. Since λ1 + λ3 > λ2, we have by the strong law of large numbers that

P{Qt̄
1 +Qt̄

3 ≥ κ
√
t̄ } ≥ P{At̄

1 +At̄
3 −At̄

2 ≥ κ
√
t̄ } → 1 as t→∞.

If in contrast to our claim, there exists θ > 0 such that P{Qt̄
2 ≥ κ

√
t̄ } ≥ θ, then for all sufficiently

large t, we have

P{(Qt̄
1 +Qt̄

3) ∧Qt̄
2 ≥ κ

√
t̄ } ≥ θ/2.

On the event {(Qt̄
1 +Qt̄

3) ∧Qt̄
2 ≥ κ

√
t̄ }, there are κ

√
t̄ unused feasible matches, which implies

R∗,t̄−RD,t̄ ≥ E[(r1∧r2)((Qt̄
1+Qt̄

3)∧Qt̄
2)] ≥ (r1∧r2)κ

√
t̄ P{(Qt̄

1+Qt̄
3)∧Qt̄

2 ≥ κ
√
t̄ } ≥ (r1∧r2)κ

√
t̄ θ/2,

contradicting the optimality guarantee o(
√
t̄ ) of the policy at time t̄.

B Proofs from Section 4

Proof of Lemma 4.1. Let B be the corresponding optimal basis to (z∗, s∗). Recall that Q0 =

{i ∈ A : s∗i = 0} and M0 = {m ∈ M : z∗m = 0} are the corresponding sets of over-demanded

queues and redundant matches, respectively.

Let (z, s) be any feasible solution of (SPP) that has si = 0 for all i ∈ Q0 and zm = 0 for all

m ∈ M0. Then it must be that (z, s) = B−1λ, and in particular, zm = ymλ for all m ∈ M+. This

immediately follows, since the linear system {Mz + s = λ, z ≥ 0, s ≥ 0} with the condition we set

on si, i ∈ Q0, and zm,m ∈M0, has a unique solution.

Recall also that (z∗, s∗) has a non-degenerate basis. In particular, the same conclusion holds if

λ is replaced by λ̃ = λ+ ζ for a suitably small ζ ∈ Rn. That is, any feasible solution to the linear

system {Mz + s = λ̃, z ≥ 0, s ≥ 0} with si = 0 for all i ∈ Q0 and zm = 0 for all m ∈ M0, must

satisfy zm = ymλ̃ for all m ∈M+.

Fix t = Ω(ϵ−2). Consider a policy D that does not execute any matches in M0. Let qi :=

ED[Qt+
i ] ≤ ED[Qt

i] = O(ϵ−1) be the post-match queue length vector and zm := Dt
m. Let z̄ := z/t
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and q̄ := q/t. Using the fact that Mz + q = λt, we have

Mz̄ + q̄ = λ,

where q̄i = O(ϵ) for all i ∈ Q0 and z̄m = 0 for all m ∈M0. For all i ∈ A, define

λ̃i := λi − q̄i1{i∈Q0}.

Let z̃m := z̄m for all m ∈ M+ and 0 otherwise. Then (z̃, q̃) satisfies Mz̃ + q̃ = λ̃, where q̃i = 0

for all i ∈ Q0 and z̃m = 0 for all m ∈M0. Per the above arguments, then it must be that z̃m = ymλ̃

for all m ∈M+. Since RD,t = t(r · z̄) ≥ t(r · z̃) = t
∑

m∈M+
rmymλ̃ and R∗,t ≤ t(r · z∗), we have

R∗,t −RD,t ≤ t (r · z∗ − r · z̃) = t

 ∑
m∈M+

rmymλ−
∑

m∈M+

rmymλ̃

 ≤ trmaxω∥λ− λ̃∥1,

where rmax := maxm∈M+ rm, and we used the fact that the vectors ym have all entries in [−ω, ω].

Recalling that |λi − λ̃i| = q̄i1{i∈Q0}, we conclude that

R∗,t −RD,t ≤ trmaxω∥λ− λ̃∥ = tO(ϵ) = O(ϵ−1),

as required.

B.1 Proof of Proposition 4.1

We first prove (8). Recall the problem

h∗(u) = min
∑

i∈Q0

∑
m∈M+

(rmym)isi

s.t. zm + yms = ymu for all m ∈M+

yjs = yju for all j ∈ Q+

z ∈ Zd
≥0, s ∈ Zn

≥0.

(18)

Since q+ is the post-match queue-length vector, no more matches can be performed from q+ itself.

Thus, we have h∗(q) = h∗(q+) =
∑

i∈Q0
θiq

+
i . It is also immediate that for all x ∈ [0n, Aτ ] ∩ Zn

≥0,
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we have

h∗(q+ +Aτ ) ≤ h∗(q+ + x) + h∗(Aτ − x). (19)

For h∗(Aτ − x), note that if yl(Aτ − x) > 0 for all l ∈M+ ∪Q+, then setting zm = ym(Aτ − x) for

all m ∈M+, si = 0 for all i ∈ Q0, and sj = yj(Aτ − x) for all j ∈ Q+, is feasible for (18) with the

objective function value of 0. Then it is also optimal, since the objective function is non-negative.

Let

X := X (Aτ ) := {x ∈ Zn
≥0 : y

l(Aτ − x) > 0 for all l ∈M+ ∪Q+}.

Then we have h∗(Aτ − x) = 0 for all x ∈ X , and (19) implies

h∗(q+ +Aτ ) ≤ inf
x∈X

h∗(q+ + x). (20)

Our goal is to show that when h∗(q) > B, for a suitable choice of τ = ⌈κϵ−1⌉, we have 0 ∈ X with

high probability, and the inequality (20) is strict for x = 0. To that end, consider the following

event

C := C(τ) :=
{∣∣∣ylAτ − ylλτ

∣∣∣ ≤ 1

2
ylλτ for all l ∈M+ ∪Q+

}
.

Since ylλ ≥ ϵ for all l ∈M+ ∪Q+, we have on C that ylAτ ≥ ϵτ/2 for all l ∈M+ ∪Q+. Thus, for

any x ∈ [0n, Aτ ]∩Zn
≥0 such that ∥x∥1 ≤ ϵτ

4ω (in particular, |ylx| ≤ ϵτ/4 for all l ∈M+ ∪Q+), on C

we have

yl(Aτ − x) ≥ ϵτ

4
for all l ∈M+ ∪Q+.

In particular, we have 0 ∈ X on C, and (20) implies h∗(q+ +Aτ ) ≤ h∗(q+).

Let i ∈ Q0 such that q+i > B/θi (such i must exists if h∗(q) = h∗(q+) > B). Consider m ∈M+

such that i ∈ A(m), and set xj = ⌊ κ
4nω ⌋ > 0 for all j ̸= i such that j ∈ A(m) and 0 otherwise. Note

that xj = ⌊ κ
4nω ⌋ ≤

ϵτ
4nω and ∥x∥1 ≤ ϵτ

4ω . Then B can be chosen sufficiently large so that it is feasible

to perform an additional ⌊ κ
4nω ⌋ many match−m’s without changing any of the other queues. Since

x ∈ X , we have on C that

h∗(q+ +Aτ ) ≤ h∗(q+ + x) ≤ h∗(q+)− θi

⌊
κ

4nω

⌋
≤ h∗(q+)− θ

⌊
κ

4nω

⌋
,

where θ := mini∈Q0 θi > 0.
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A simple extension of Chernoff bounds for the sums ylAτ , l ∈M+ ∪Q+, yields

P
{∣∣∣ylAτ − ylλτ

∣∣∣ ≥ 1

2
ylλτ

}
≤ c3e

−c4ylλτ ≤ c3e
−c4ϵτ for all l ∈M+ ∪Q+,

for some constants c3, c4 > 0, where recall that ϵ = minm∈M+ ymλ ∧ minj∈Q+ yjλ. By the union

bound, we have

P{Cc} ≤ nc3e
−c4ϵτ .

Now we utilize the following lemma, which provides an upper bound for the expectation in (8)

when we are outside of the event C.

Lemma B.1. For some constant K > 0, which does not depend on ϵ, we have

Eq[((h
∗(Qτ )− h∗(q))+)2] ≤ K2ϵ2τ2.

Hölder’s inequality then implies that

E[(h∗(q +Aτ )− h∗(q))+1{Cc}] ≤ Kϵτnc3e
−c4ϵτ .

Given δ ∈ (0, 1), set τ = ⌈κϵ−1⌉ with large enough κ ≥ 8nω such that

nc3e
−c4ϵτ ≤ δ and Kϵτnc3e

−c4ϵτ ≤ (1− δ)θ

⌊
κ

8nω

⌋
.

Recalling that h∗(q) = h∗(q+), we can then conclude that if h∗(q) > B, then

Eq[h
∗(Qτ )− h∗(q)] ≤ −P{C}θ

⌊
κ

4nω

⌋
+ E[(h∗(q +Aτ )− h∗(q))+1{Cc}]

≤ −(1− δ)θ

⌊
κ

4nω

⌋
+ (1− δ)θ

⌊
κ

8nω

⌋
≤ −γ,

where γ := θ (1−δ)
16nω > 0. If h∗(q) ≤ B, then clearly

Eq[h
∗(Qτ )− h∗(q)] ≤ B +

∑
i∈Q0

θiλiτ ≤
1

ϵ
(B +

∑
i∈Q0

θiλi(κ+ 1)),

where for the last inequality, we used the fact that ϵ < 1 and κ+1 ≥ ϵτ . This establishes the drift
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property (8), and we turn to prove (9). This follows from a standard mechanism, which derives an

exponential Lyapunov function from a given linear one. Note that under the exhaustive resolving

policy, any match that is performed at any decision period tk must contain at least one agent type

that arrived between tk−1 and tk. Thus, we have
∑

m∈M+
(D

tk+1
m − Dtk

m) ≤
∑

i∈A(A
tk+1 − Atk).

Merging this fact with (1) immediately implies the following auxiliary lemma.

Lemma B.2. Under the exhaustive resolving policy, we have

∑
i∈A
|Qt+k+1

i −Q
t+k
i | ≤

∑
i∈A

(Atk+1 −Atk) ≤ nτ for all k ∈ N.

Let θ̄ := maxi θi > 0. Then by Lemma B.2, we have

C = sup
q∈S

Eq

[
e|h

∗(Qτ )−h∗(q)|
]
≤ eθ̄nτ <∞.

In particular, the second condition of (Robert, 2003, Proposition 8.8) is satisfied with λ = 1 there.

It also follows from the proof of (Robert, 2003, Proposition 8.8) that

Eq[e
h∗(Qτ )] ≤ eh

∗(q)(1− γ/2), if q ∈ F c.

Since the linear program (7) that defines h∗(·) is Lipschitz continuous in the right hand side, we

have h∗(Qτ ) ≤ maxq∈F h∗(q) + c5τ for some constant c5 > 0. Letting c6 := emaxq∈F h∗(q), we have

Eq[e
h∗(Qτ )] ≤ c6e

c5τ , if q ∈ F.

Overall, we obtain (9):

Eq

[
eh

∗(Qτ ) − eh
∗(q)

]
≤ −γ

2
eh

∗(q)
1{q∈F c} + c6e

c5τ1{q∈F}

≤ −γ

2
eh

∗(q) + c7e
c5τ1{q∈F}

for some constant c7 > c6.

Proof of Lemma B.1. We will first show that given x ∈ Zn
≥0, we have

(h∗(q + x)− h∗(q))+ ≤ K max
l∈Q+∪M+

(ylx)− ≤ K
∑

l∈Q+∪M+

(ylx)−. (21)
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The proof than follows immediately by setting x = Aτ and using the following auxiliary result with

a redefined constant K, which we prove in the end of this section.

Proposition B.1.

E

[(
min

l∈Q+∪M+

(ylAτ )−
)2

]
≤ K2ϵ2τ2,

for some constant K > 0, which does not depend on ϵ.

We turn then to prove (21). Recall that h∗(q + x) ≤ h∗(q) + h∗(x), where h∗(x) ≥ 0, and we

have h∗(x) = 0 if ylx ≥ 0 for all l ∈ M+ ∪ Q+. Then (h∗(q + x)− h∗(q))+ ≤ h∗(x), and it suffices

to show that for any x ∈ Zn
≥0, not necessarily satisfying ylx ≥ 0 for all l ∈M+ ∪Q+, we have

h∗(x) ≤ K max
l∈Q+∪M+

(ylx)−. (22)

Given x ∈ Zn
≥0, let ζ ∈ Zn

≥0 be such that ylx = ylζ for all l ∈ P+ = {l ∈ M+ ∪ Q+ : ylx ≥ 0},

and ylζ = 0 for all l ∈ (M+ ∪ Q+)\P+. Note that the linear program (7) has for all l ∈ P+ the

same right-hand side for either x or ζ. The right-hand side differs only for l ∈ (M+ ∪ Q+)\P+,

and since ylζ = 0 for such indices, the difference in the right hand side is |ylζ − ylx| = |ylx|. By

the Lipschitz continuity of (SPP) (e.g., see (Mangasarian and Shiau, 1987)), we have

|h∗(x)− h∗(ζ)| ≤ K max
l∈(M+∪Q+)\P+

|ylx| = K max
l∈M+∪Q+

(ylx)−,

where we used the fact that (ylx)− = 0 for all l ∈ P+. Finally, since ylζ ≥ 0 for all l ∈ M+ ∪ Q+,

we have h∗(ζ) = 0 so that we arrive at (22).

That existence of ζ is straightforward. Construct a “matching increment” µ ∈ Zd
≥0 as follows:

µ =

 0, if m ∈ P+,

(ymx)−, if m ∈M+\P+.

Let ϕ = Mµ, and observe that ymϕ = ymMµ = µm for all m ∈M+. Letting

ζ = x+ ϕ ≥ 0,

we then have that ymζ = ymx for all m ∈ P+ and ymζ = ymx+ (ymx)− = 0 for all m ∈ M+\P+

as required.
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Proof of Proposition B.1. Since

E

[(
min

l∈M+∪Q+

(ylAτ )−
)2

]
≤ K

 ∑
l∈M+∪Q+

E
[(

(ylAτ )−
)2

] ,

it suffices to establish that the bound holds for each l ∈M+ ∪Q+ separately. Note that

yl(Aτ − λτ) =
τ∑

t=1

yl(∆Al − λ),

where ∆At = At − At−1. Observe that the variables in the sum are i.i.d, and each variable is

bounded by n. Then by Hoeffding’s inequality, for any k > 0, we have

P
{
|yl(Aτ − λτ)| ≥ ylλτ + kϵτ

}
≤ 2 exp

(
−2(ylλτ + kϵτ)2

τn2

)
≤ 2 exp

(
− 2

n2
(ylλτ + kϵτ)

)
.

Notice that n here is the number of agent types, which does not change with ϵ or τ . In turn,

P{(ylAτ )− ≥ kϵτ} = P{ylAτ ≤ −kϵτ} ≤ P{|yl(Aτ − λτ)| ≥ ylλτ + kϵτ}

≤ exp

(
− 2

n2
(ylλτ + kϵτ)

)
≤ exp

(
− 2

n2
kϵτ

)
,

where the last inequality uses the fact that ylλ ≥ 0. This exponential tail then implies the result

of the lemma by a simple integration.

C Proofs from Section 5

Proof of Lemma 5.1. The task here is to prove that under the assumption of the lemma, (SPP)

can be equivalently represented by a suitable minimum-cost network flow problem. Since such a

flow problem always has an acyclic optimal solution (Ahuja et al., 1993, Theorem 11.1), the lemma

then follows from the assumed uniqueness under GP.

First, let us create the partition. Having only two-way matches allows us to represent the

matching network graph as a simple graph. That is, we will have a vertex corresponding to each

agent type (but not for matches), and there exists an edge between i, j ∈ A if and only if there

exists m ∈M such that Mim = Mjm = 1. Thus, each edge (i, j) in this simple graph representation

is uniquely identified by a match, and we will write ri,j for the value of that match.

Our assumption—that any cycle contains an even number of matches—translates in this simple
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graph representation to assuming that any cycle is of even length. Since a simple graph is bipartite

if and only if it does not contain any odd cycles, we have a partition of A into two disjoint subsets

A1 and A2 such that all edges in the graph are between some i ∈ A1 and j ∈ A2.

As it is customary, we augment this graph with an origin (or supply) node s, and a destination

(or target) node t. There will be directed outgoing edges from s to each i ∈ A1, as well as outgoing

edges from each j ∈ A2 to t, and each edge (i, j) in this graph is directed from i ∈ A1 to j ∈ A2.

Note that the resulting directed graph, by construction, has no directed cycles. For each edge

(i, j) in this graph, we place a negative cost −ri,j (i ∈ A1, j ∈ A2). We also put upper bounds

xs,i ≤ λi for all i ∈ Ai and xj,t ≤ λj for all j ∈ A2. Consider the following minimum-cost network

flow problem

min −
∑

i∈A1,j∈A2
ri,jxi,j

s.t.
∑

j∈A2
xi,j − xs,i = 0 for all i ∈ A1∑

i∈A1
xi,j − xj,t = 0 for all j ∈ A2

xs,i ≤ λi for all i ∈ A1

xj,t ≤ λj for all j ∈ A2

x ≥ 0.

This problem has a cycle free solution; e.g., see (Ahuja et al., 1993, Chapter 11.1). In particular,

since the variables xi,j (i ∈ A1, j ∈ A2) have no upper or lower bounds, there is no (undirected)

cycle consists of edges such that xi,j > 0 for all edges (i, j) in the cycle.

Recall that these edges correspond to matches in the original matching network. Let zm = xi,j

for all m = (i, j) ∈ M, si = λi − xs,i for all i ∈ A1, and sj = λj − xj,t for all j ∈ A2. Then it

is immediate that the minimum-cost network flow problem is equivalent to (SPP). In turn, the

optimal solution to the latter problem is acyclic, where the uniqueness is assumed under GP.

Proof of Lemma 5.2. Let (z∗, s∗) be an optimal basic feasible solution of (SPP) such that the

corresponding LP-residual graph is acyclic. By Theorem 5.1, we know that for any m ∈ M that

is a basic variable, we have z∗m = ymλ ≥ 0, and for any i ∈ A that is a basic variable, we have

s∗i = yiλ ≥ 0. Note that if z∗m = ymλ = 0, then condition (12) is violated, since ym is a vector with

all entries in {−1, 0, 1}. Similarly, we must have s∗i > 0, which implies that the optimal basis is

non-degenerate.

Construction of the surplus vectors. Removing all redundant matches m ∈ M0 from G,

decomposes the network into (possibly) multiple connected components. Throughout the construc-
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tion in this section, we assume, without loss of generality, that there is a single component, i.e.,

M0 = ∅. Otherwise, the following procedure is applied separately to each component.

Let U0 := {i ∈ Q0 :
∑

m∈MMim = 1}. This is the set of queues in Q0 participating in exactly

one match; U0 is a subset of the leaves in G. The following lemma shows that U0 is non-empty.

Lemma C.1. The number of leaves in G is at least n− d+ 1. Since |Q+| = n− d, at least one of

the leaves must be in Q0, and in turn, |U0| ≥ 1.

For each pair of vertices j ∈ Q+ and i ∈ U0, we traverse the unique path between j and i in the

(SPP)-residual graph G. Starting from j ∈ Q+, any edge from some i′ ∈ A to some m′ ∈ M on

this path is marked with the direction it is traversed, i′ → m′ or m′ → i′. An edge can be marked

with both directions if it is traversed i′ → m′ on one path, but m′ → i′ on another. Denote the

resulting directed graph by
−→
G .

Figure 8: An example of a directed graph
−→
G . In this network, Q+ = {6, 7, 8} and U0 = {1, 2}. (LEFT) The edge

between match−1 and queue−4 is marked with both directions, since it is traversed on both paths 7 → 1 (marked in
red) and 6 → 2 (marked in blue). (RIGHT) The subtrees rooted at queue−7 (T7) and queue−8 (T8), respectively.

Lemma C.2. For each match m ∈ M, there is a unique queue i(m) ∈ A(m), such that the edge

between m and i(m) has a single direction in the
−→
G , which is directed from m to i(m).

Given
−→
G , we say that a path from j ∈ A to i ∈ U0 is uniquely directed if for any match m ∈M

on this path, the only outgoing edge from m is to i(m). For example in Figure 8, the path from

queue−7 to queue−1 is uniquely directed, whereas the path from queue−6 to queue−2 is not.

Based on these uniquely directed paths, we build subtrees as follows. For each i ∈ A, we let

Ti be the subtree rooted at i, where Ti is the union of all uniquely directed paths starting from i.

Ti, by construction, is a two-way tree: for each match−m in the subtree, we have A(m) = 2; see

Figure 8 for an example of a subtree. Let A(Ti) be the set of queues in Ti.
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Let d(i, j) be the length of the directed path from i ∈ A to j ∈ A in
−→
G . For each i ∈ A, we

then define the surplus vector yi ∈ {−1, 0, 1}n as follows:

(yi)j :=


0, if j ∈ A\A(Ti),

1, if d(i, j) ≡ 0 (mod 4),

−1, if d(i, j) ≡ 2 (mod 4).

Note that since d(i, i) = 0, in particular, we have (yi)i = 1. Finally, we identify the surplus vector

for each m ∈M with the vector yi(m):

ym := yi(m) for all m ∈M.

Proof of Theorem 5.1. Following the arguments on the structure of the optimal solution of

(SPP) in §4.2, assume thatM+ = {1, 2, ..., d− ϱ} and Q+ = {d− ϱ+ 1, d− ϱ+ 2, ..., n}, where we

let ϱ := |M0|. Then the optimal basis matrix takes the form

B =

 M0 0

M+ I

 ,

whereM0 has the rows ofM corresponding to the queues inQ0,M
+ has the remaining n−d+ϱ rows,

and B has the columns corresponding toM+ and Q+ in order; I here is an (n−d+ϱ)× (n−d+ϱ)

identity matrix, and 0 is a (d− ϱ)× (n− d+ ϱ) zero matrix.

Being the basis matrix, B is invertible and we claim that Y = B−1 has the following form

B−1 = Y :=

 Y 0 0

Y + I

 ,

where [Y 0, 0] is a (d− ϱ)× n matrix and [Y +, I] is an (n− d+ ϱ)× n matrix, where

1. mth row of [Y 0, 0] is ym for each m ∈M+, and

2. jth row of [Y +, I] is yd−ϱ+j for each d− ϱ+ j ∈ Q+.

In turn, the optimal solution of (SPP) can be written as

 z∗M+

s∗Q+

 = B−1λ = Y λ,
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which implies z∗m = ymλ > 0 for all m ∈ M+, and s∗j = yjλ > 0 for all j ∈ Q+, where strict

inequalities follow from the non-degeneracy of (z∗, s∗).

To prove the claim above, note that

Y B =

 Y 0 0

Y + I

 M0 0

M+ I

 =

 M0 0

M+ I

 Y 0 0

Y + I

 = I, (23)

is equivalent (and hence implied) by the following two properties:

1. [Y 0, 0]′

 M0

M+

 = I, or ymM = em for all m ∈M+, where ym is the mth row of Y , and em

is the mth row of I,

2. Y +M0 +M+ = 0,

which we will prove next. Take any two matches m,m′ ∈ M+, and consider the subtree Ti(m). If

m′ is included in Ti(m), then the queues j ∈ A(Ti(m))∩A(m′) appear in the vector yi(m) = ym with

opposite signs. If m′ is not included in Ti(m), then the queues that are participating in m′ have 0

values in the vector ym. Finally, since (ym)i(m) has a positive sign, we have ymM = em, and the

first property holds.

For the second property, note that for each j ∈ Q+, the vector yjM0 has −1 for each match m

that j participates in, and 0 otherwise. Thus, Y +M0 +M+ = 0, and property 2 holds as well.

Proof of Lemma C.1. We use induction on the number of queue vertices n.

Basis. Assume that n = 2. Then G is unique with d = 1, and both queues correspond to a leaf in

G. Thus, G contains n− d+ 1 = 2 leaves.

Inductive step. Assume that the induction hypothesis holds for all G with n queue vertices,

n ≥ 2. Consider G with n+1 queue vertices. Since G is connected and acyclic, there exists a queue

vertex v that participates in exactly one matching, i.e., v is a leaf in G. Otherwise, since all queue

and match vertices have degree at least 2, there would exist a cycle.

Denote the unique match vertex that v participates in G by m. First, assume that the number

of queues participating in m is exactly 2. Denote the other queue vertex participating in m by v′.

Remove v and m from G and let G′ = G −{v,m} be the residual graph, which is clearly a matching

network. By the induction hypothesis, G′ contains at least (n− 1)− (d− 1) + 1 = n− d+1 leaves.

If v′ is not a leaf in G′, then adding back v and m increases the number of leaves by 1. Thus, G
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contains at least n− d+ 2 leaves. If v′ is a leaf in G′, then adding back v and m does not change

the number of leaves. Thus, G contains at least n− d+ 1 leaves.

Similarly, if the number of queues participating in m is at least 3, then removing v from G

results in a matching network with n− 1 queue vertices. By the induction hypothesis, the residual

graph G′ contains at least (n− 1)−d+1 = n−d leaves. Thus, adding back v increases the number

of leaves by 1, and G contains at least n − d + 1 leaves. Thus, the induction hypothesis holds for

all G with n+ 1 queue vertices.

Finally, since |Q+| = n− d, we have |U0| ≥ 1.

Proof of Lemma C.2. We first start with proving the following claim: G satisfies (i) all matches

in G are two-way, i.e., |A(m)| = 2 for all m ∈ M, or (ii) |U0| = 1 if and only if all the edges in
−→
G have a single direction. The necessity part is immediate. Note that if G only contains two-way

matches, then we have |Q+| = n− (n− 1) = 1. Thus, by the construction of
−→
G , all the edges are

assigned with a single direction. Similarly if |U0| = 1, all the edges in
−→
G have a single direction by

construction (otherwise,
−→
G would contain an undirected cycle). For the sufficiency part, assume

to the contrary that there exists m ∈ M such that |A(m)| ≥ 3 and |U0| ≥ 2. Since n − d ≥ 2, we

also have |Q+| ≥ 2. Let v1, v2 ∈ Q+ and u1, u2 ∈ U0. By the construction of
−→
G , there is a directed

path from v1 to u1, v1 to u2, v2 to u1 and v2 to u2 in
−→
G . If all the edges have a single direction,

then there exists a cycle in G that contains v1, v2, u1 and u2, which is a contradiction.

Now let E be the set of all edges in
−→
G , which are assigned with both directions. Then removing

E from
−→
G , decomposes

−→
G into (possibly) multiple connected components that satisfy either (i) or

(ii) in the above claim. In both cases, for each match m, there is a unique queue−i in its component,

such that the edge between m and i has a single direction, which is directed from m to i.

Proof of Theorem 5.2. Let us argue that we can construct a match value vector r′ such that

the optimal basis of (SPP) is unchanged, and all the coefficients of the objective function in (7)

are equal to 1. Then Theorem 5.2 immediately follows from the proof of Theorem 3.1, since under

the new match value vector r′, the policy D′ simply resolves (7) at each decision period tk. It is

straightforward to check that the desired match value vector is the following:

r′m :=


1, if A(m) ∩Q+ ̸= ∅,

2, if A(m) ∩Q+ = ∅ and |A(m)| = 2,

|A(m)|, otherwise.
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D Proof of the upper bound in Theorem 3.1

Recalling that under the exhaustive resolving policy, agents of type i ∈ Q+ are removed post-

match if not used, it is straightforward to verify that the discrete time Markov chain (Qtk , k ∈ N)

is irreducible and aperiodic on its state space

S := {Q ∈ Zn
≥0 : Qj ≤ τ for all j ∈ Q+}.

Let F := {Q ∈ S : h∗(Q) ≤ B}. Since θ =
∑

m∈M+
rmym ≥ 0, and in particular, θi > 0 for all

i ∈ Q0, F is clearly finite. Then the drift property (8) implies that the Markov chain is positive

recurrent; e.g., see (Robert, 2003, Theorem 8.6). It also follows from Lemma 4.2 that under the

Markov chain’s unique stationary distribution, which we denote by π, we have

Eπ[L(Q0)] ≤ 2c1
γ

ec2τ , (24)

where Q0 ∼ π. Since τ = ⌈κϵ−1⌉, by Jensen’s inequality we have

Eπ[h
∗(Q0)] = O(ϵ−1). (25)

We next show that with the initial state q = 0, (25) holds for all t > 0. Let f0(q) := γ
4L(q). Then

(9) can be rewritten as

Eq[L(Qτ )] ≤
(
1− γ

4

)
L(q)− f0(q), if q ∈ F c.

It then follows from (Meyn and Tweedie, 1992, Theorem 6.2) (with ε = 1 and r = (1 − γ/4)−1

there) that

Eq

[
τF∑
k=1

rkf0(Qtk−1)

]
≤

 L(q), q ∈ F c,

(1− γ/4)−1(f0(q) + E[L(Qτ )]), q ∈ S,

where τF := inf{k ≥ 1 : Qtk ∈ F}.

Because of the Lipschitz continuity of h∗(·), we have L(Qτ ) ≤ L(q)ecτ for some c > 0.

Setting the initial state q = 0, we then have a sufficiently large constant α > 0 such that

E0

[∑τF
k=1 r

kf0(Qtk−1)
]
≤ αeατ .

Applying (Meyn and Tweedie, 1992, Theorem 6.1) (with m = 1 there), we conclude that for all
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k ≥ 1, we have

|E0[f
0(Qtk)]− Eπ[f

0(Q0)]| = γ

4
|E0[L(Qtk)]− Eπ[L(Q0)]| ≤ αeατ ,

for a redefined constant α. Combining this with (24), we conclude that for all k ≥ 1, we have

|E0[f
0(Qtk)]| ≤ αeατ ,

for a redefined constant α. Then by Jensen’s inequality, we have

E0[h
∗(Qtk)] = O(ϵ−1) for all k ≥ 1.

Finally, note that for t ∈ (tk, tk+1), the Lipschitz continuity of h∗(·) implies that, because |Qt−Qs| ≤

|t− s|, we have

E0[h
∗(Qt)] ≤ υ(E0[h

∗(Qtk)] + τ) = O(ϵ−1) for all k ≥ 1,

for some constant υ > 0. Using the optimality test (Lemma 4.1), this proves the upper bound in

Theorem 3.1.

We note here that removing agents of type i ∈ Q+ under the exhaustive resolving policy is

without loss of generality. It is immediate to see that if one imposes any finite buffer size (the

buffer size is τ in the proof) for the under-demanded queues, then the proof does not change since

the set F is still finite. Therefore, if one focuses on finite horizon (say T ) value maximization, then

one can set the buffer size to be T .

E Proof of the lower bound in Theorem 3.1

Throughout the proof, we use superscripts on expectations and probabilities to make explicit the

dependence on ϵ. Assume to the contrary that there exists a matching policy, which has

Eϵ

∑
i∈Q0

Qt
i

 = o(ϵ−1) for all t > 0.

Markov’s inequality then implies that for all t > 0, Pϵ{
∑

i∈Q0
Qt

i ≥ ϵ−1} = o(ϵ) → 0 as ϵ ↓ 0. In
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particular, given t > 0 and 0 < δ1 < 1, for all sufficiently small ϵ > 0, we have

Pϵ

∑
i∈Q0

Qt
i ≤ ϵ−1

 ≥ 1− δ1 > 0. (26)

For ease of exposition, let us fix some t0 > 0, and assume that
∑

i∈Q0
Qt0

i ≤ ϵ−1 throughout the

analysis. We will argue that this is without loss of generality at the end of the proof. First consider

the case when the general position gap is determined by some active match, i.e., ϵ = ymλ for some

m ∈M+. Consider the process Is := ymQs for all s ≥ t0. Then we have

Is = It0 + ymAt0,s −Dt0,s−
m for all s ≥ t0,

where for any t > 0 and s > t, we define At,s := As−At and Dt,s−
m := Ds−

m −Dt
m. Since Dt,s−

m ≥ 0,

we have

Is ≤ It0 + ymAt0,s for all s ≥ t0. (27)

Define a stopping time

ν := inf{t0 + u : It0+u ≤ −ϵ−1, u ≥ 0}.

We claim, and will later prove, that given 0 < δ2 <
1
2 , there exists B > 0 (that does not depend on

ϵ) such that

Pϵ{ν ≤ t0 +B/ϵ2} ≥ 1− 2δ2 > 0, (28)

for all sufficiently small ϵ > 0.

Next, we use the fact that if the network is non-trivial, then ym contains at least one negative

entry. To see this, let N (m) be the set of all active matches that share a queue with m, i.e.,

N (m) := {m′ ∈ M+ : A(m) ∩ A(m′) ̸= ∅}. Since the network is non-trivial, any i ∈ A(m)

participates in at least two active matches in N (m). Let cm′ be the column of M corresponding

to m′ ∈ M+. Assume to the contrary that (ym)i ≥ 0 for all i ∈ A. Since ym · cm′ = 0 for all

m′ ∈ N (m), we must have (ym)i = 0 for all i ∈ A(m) ∩ A(m′), which implies that (ym)i = 0 for

all i ∈ A(m). But this contradicts to the fact that ym · cm = 1. Thus, ym contains at least one

negative entry.

Let S+ be the set of all indices of ym that has a positive entry, and let S− be the set of all

indices of ym that has a negative entry. Since Is = ymQs =
∑

i∈S+(ym)iQ
s
i +

∑
i∈S−(ym)iQ

s
i
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≤ −ϵ−1 implies that −
∑

i∈S−(ym)iQ
s
i ≥ ϵ−1, we have −

∑
i∈S−(ym)iQ

ν
i ≥ ϵ−1 on the event

E := {ν ≤ t0 +B/ϵ2}.

Since −
∑

i∈S−(ym)iQ
s
i ≥ −

∑
i∈S−(ym)iQ

t0
i − ymAt0,s for all s ≥ t0 by (27), we have

−
∑
i∈S−

(ym)iQ
t0+B/ϵ2

i ≥ inf
ν≤u≤t0+B/ϵ2

1

ϵ
− ymAν,u,

on the event E . In particular,

Pϵ

− ∑
i∈S−

(ym)iQ
t0+B/ϵ2

i ≥ 1

ϵ
, E

 ≥ Pϵ

{
inf

ν≤u≤t0+B/ϵ2

(
1

ϵ
− ymAν,u

)
≥ 1

ϵ
, E

}

≥ Pϵ

{
inf

0≤u≤B/ϵ2

(
1

ϵ
− ymAu

)
≥ 1

2ϵ
, E

}
. (29)

The process Su := (−ymAu : u ∈ Z≥0) is a lazy random walk on Z, with transition probabilities

P{Su+1 = Su + 1} = −
∑

i∈S−(ym)iλi and P{Su+1 = Su − 1} =
∑

i∈S+(ym)iλi, which yields

E[Su+1 − Su|Su] = −ymλ = −ϵ. Donsker’s theorem (Donsker, 1951) (e.g., see also (Whitt, 2002,

Page 102)) guarantees that

Îϵ(u) := ϵ(−ymA⌈u/ϵ2⌉)⇒W

where W is a Brownian motion with drift −1 and squared diffusion coefficient σ2 =
∑

i∈S+ ymλi−∑
i∈S− ymλi. Moreover, the convergence is uniform over compact intervals. Using the continuity

of the infimum map (Whitt, 2002, Section 13.4), we have

Pϵ

{
inf

0≤u≤B/ϵ2

(
1

ϵ
− ymAu

)
≥ 1

2ϵ

}
→ P

{
inf

0≤u≤B

(
1 + Î(u)

)
≥ 1

2

}
≥ δ3, (30)

for some δ3 > 0. Finally, using (29) and (30), choosing δ2 sufficiently small (and then B large)

yields

Pϵ

− ∑
i∈S−

(ym)iQ
t0+B/ϵ2

i ≥ 1

ϵ
, E

 ≥ Pϵ

{
inf

0≤u≤B/ϵ2

(
1

ϵ
− ymAu

)
≥ 1

2ϵ

}
+Pϵ{E}−1 ≥ δ3

2
−2δ2 > δ4
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for some δ4 > 0. We conclude that

Eϵ

− ∑
i∈S−

(ym)iQ
t0+B/ϵ2

i

 ≥ 1

ϵ
Pϵ

− ∑
i∈S−

(ym)iQ
t0+B/ϵ2

i ≥ 1

ϵ
, E

 ≥ δ4
ϵ
,

which is a contradiction to the assumption that Eϵ
[∑

i∈Q0
Qt

i

]
= o(ϵ−1) for all t > 0, and for all

ϵ > 0 sufficiently small.

So far, the analysis assumes that
∑

i∈Q0
Qt0

i ≤ ϵ−1 for some fixed t0. However, this assumption

is without loss of generality, since the choice of δ1 in (26) is arbitrary. It remains to establish (28).

Since

ν ≤ ν0 := inf{s ≥ t0 : I
t0 + ymAt0,s ≤ −ϵ−1},

we will study ν0 instead. Under any non-anticipating matching policy, the law of ymAt0,s is inde-

pendent of It0 , and the process is a random walk with upward probability −
∑

i∈S−(ym)iλi and

downward probability
∑

i∈S+(ym)iλi = −
∑

i∈S−(ym)iλi + ϵ. We use again the convergence of

Îϵ(u) := ϵ(It0 − ymA⌈u/ϵ2⌉).

Note that our initialization t0 is such that ϵIt0 ⇒ 0. Hence, Îϵ(u) converges, as before, to a Brownian

motion starting at 0. From continuity of the first passage time map (Whitt, 2002, Section 13.6.3),

we have

ϵ2(ν0 − t0)⇒ ν̂ := inf{s ≥ 0 :W(s) ≤ −1}.

It is known that P{ν̂ < ∞} > 0 so that given 0 < δ2 < 1
2 , there exists B > 0 (that does not

depend on ϵ) such that P{ν̂ ≤ B} ≥ 1 − δ2. In turn, by the weak convergence of ϵ2(ν0 − t0),

Pϵ{ν0 − t0 ≤ B/ϵ2} ≥ 1− 2δ2 > 0 for all ϵ > 0 sufficiently small, as stated.

So far, we considered the effect of ϵ = z∗m for some m ∈ M+, which determined the general

position gap. To cover the case when the general position gap is determined by a slack variable,

now we show that the case when ϵ = s∗j for some j ∈ Q+ has a similar implication.

Similar to the previous case, yj must contain at least one negative entry, since yjM = 0 and

yjλ = s∗j > 0. Note that yjM = 0 also implies that yjQt = yjAt for all t > 0. Let S+ be the set

of all indices of yj that has a positive entry, and let S− be the set of all indices of yj that has a
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negative entry. Since yjQt ≤ −ϵ−1 implies that −
∑

i∈S+(yj)iQ
t
i ≥ ϵ−1, we have

Pϵ{−
∑
i∈S+

(yj)iQ
t
i ≥ ϵ−1} ≥ Pϵ{yjAt ≤ ϵ−1} for all t > 0.

Notice that Eϵ[yjAt] = tϵ = ts∗j . Redefining the process It := −yjAt, we have as before that

Î ⇒W where W is a Brownian motion with drift −1. In particular, there exists δ, s > 0 such that

P{W(s) ≤ −1} ≥ δ. Similarly, for any initialization t0, there exists t ≥ t0 such that, for all ϵ > 0

sufficiently small, we have

Pϵ

− ∑
i∈S+

(yj)iQ
t
i ≥

1

ϵ

 ≥ δ

2
,

which implies Eϵ[−
∑

i∈S+(yj)iQ
t
i] ≥ δ

2ϵ
−1.

Implication to lower bound. So far, the arguments imply that over-demanded queues (queues

in Q0) cannot be made permanently small. It remains to prove that supt>0(R∗,t −RD,t) ≥ γϵ−1.

We will utilize the following lemma, which argues that R∗,t, the optimal value at time t, is

constant away from the optimal value of (SPP) when the right-hand side is scaled by t. This

follows readily from the assumed non-degeneracy of (SPP) and Lipschitz continuity of (SPP) in

the right-hand side.

Lemma E.1. Suppose that GP holds. Let (z∗, s∗) be the unique optimal solution of (SPP). Then

(r · z∗)t−R∗,t ≤ Λ for all t > 0, where Λ > 0 is a constant that may depend on n, d, M and r (but

not on λ or ϵ).

Note that a policy that has the state of queues Qt at time t (such that E[
∑

i∈Q0
Qt

i] ≥ γϵ−1), can

collect at most the value given by the following LP upper bound

β∗(Qt, At) :=

max r · z

s.t. Mz ≤ At −Qt

z ∈ Zd
≥0.

This linear program is concave in its right-hand side so that by Jensen’s inequality, we have RD,t ≤

ED[β∗(Qt, At)] ≤ β∗(ED[Qt], λt). Per the derivation in Section 4, we can rewrite the above linear
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program as

β∗(ED[Qt], λt) =

max
∑

m∈M+
rmym(λt− ED[Qt])−

∑
i∈Q0

∑
m∈M+

(rmym)isi

s.t. zm + yms = ym(λt− ED[Qt]) for all m ∈M+

yis = yj(λt− ED[Qt]) for all j ∈ Q+

z ∈ Zd
≥0, s ∈ Zn

≥0.

Recall that θi = (
∑

m rmym)i > 0 for all i ∈ Q0. Since E[
∑

i∈Q0
Qt

i] ≥ γϵ−1, we have

RD,t ≤ β∗(ED[Qt], λt) ≤
∑

m∈M+

rmymλt− Ω(ϵ−1) ≤ R∗,t − Ω(ϵ−1),

where the last inequality follows from Lemma E.1. It only remains to prove Lemma E.1. Using

standard arguments, for all t sufficiently large, we have

P{∥At − λt∥1 ≥ t3/4} ≤ c1e
−c2t1/4 ,

for some constants c1, c2 > 0. Note that on the event ∥At−λt∥1 < t3/4, we have for all t sufficiently

large that ymAt > 0 for all m ∈M+. Then the optimal solution of (SPP) with the right-hand side

At has z∗m(At) = ymAt for all m ∈M+ and z∗m(At) = 0 for all m ∈M0. Outside of this event, the

optimality gap is at most r̄t, where r̄ = maxm∈M rm. Thus, we have

(r · z∗)t−R∗,t ≤ O(1) + r̄tc1e
−c2t1/4 = O(1).
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