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Abstract

We study centralized dynamic matching markets with finitely many agent types and hetero-

geneous match values. A network topology describes the pairs of agent types that can form a

match and the value generated from each match.

A matching policy is hindsight optimal if the policy can (nearly) maximize the total value

simultaneously at all times. We find that suitably designed greedy policies are hindsight optimal

in two-way matching networks. This implies that there is essentially no positive externality from

having agents waiting to form future matches.

We first show that the greedy longest-queue policy with a minor variation is hindsight op-

timal. Importantly, the policy is greedy relative to a residual network, which includes only

non-redundant matches with respect to the static optimal matching rates. Moreover, when the

residual network is acyclic (e.g., as in two-sided networks), we prescribe a greedy static priority

policy that is also hindsight optimal. The priority order of this policy is robust to arrival rate

perturbations that do not alter the residual network.

Hindsight optimality is closely related to the lengths of type-specific queues. Queue-lengths

cannot be smaller (in expectation) than of the order of ε−1, where ε is the general position gap

that quantifies the stability in the network. The greedy longest-queue policy achieves this lower

bound.

1 Introduction

We study centralized dynamic matching markets with finitely many agent types and heterogeneous

match values. Delaying actions to accumulate “inventory” creates a positive externality from
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forming future matches that generate high value. This delay, however, inevitably compromises

short-term value. The goal of this paper is to shed light on this tension within the family of

two-way matching networks.

In our model, agents arrive sequentially to the market. The type of an agent is observed upon

arrival and independently drawn from a given distribution over finitely many types; we associate

each type with a queue that holds waiting agents of that type. A network topology describes which

pairs of agent types can match. We assume that agents leave the market when they are matched.

A matching policy determines when and which matches to form.

To evaluate a matching policy and the tension between short- and long-term value, we use the

notion of all-time regret. The regret at a given time t is measured by the difference between the

(expected) total value that can possibly be generated and the (expected) total value generated by

the policy until time t. The existence of a policy that achieves a “small” regret at all times suggests

that the tension between short- and long-term value is essentially moot. We refer to such a policy

as hindsight optimal.

The networks considered in this paper are two-way (each match includes two agents) and satisfy

a general position condition. General position is a weak (but necessary) condition that holds when

the static-planning problem (a linear program that optimizes the first order matching rates) has a

unique and non-degenerate optimal solution.

Optimality of greedy policies. Our main contribution is identifying that for the family of two-

way matching networks, suitably designed greedy policies are hindsight optimal. This implies that

two-way matching networks that satisfy general position are simple, in the sense that they can be

managed locally (in time) without concern for long-term implications and using intuitive matching

rules.

The greedy policies require a minimal preprocessing that includes the removal of all redundant

matches from the network. Redundant matches are those that are not used by the static-planning

problem. For hindsight optimality, any matching policy must mostly avoid performing redundant

matches. Our policies operate on a residual network that is obtained from removing these matches

from the original network.

An important group of agent types are those that are under-demanded. The static-planning

problem—and hence any “reasonable” matching policy—matches only a fraction of under-demanded

agent types. In every component of a residual network, we show that there is at most one such

agent type; and there is exactly one in every acyclic component. These types anchor the policies.
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The first greedy policy we prescribe is the longest-queue policy with a minor variation. When an

agent of a given type arrives and enables possibly multiple feasible (and non-redundant) matches,

it is matched to an agent from the longest neighboring queue. One exception is that ties are

never broken in favor of an under-demanded agent type. Naturally, the longest-queue policy is a

state-dependent policy.

Static (hence state-independent) priority policies are also appealing and common in practice.

These policies are also greedy, and ties are broken according to an exogenous priority order. We

construct a static priority policy that is hindsight optimal for two-way matching networks, whose

residual networks (after removal of all redundant matches) is acyclic. Bipartite networks, which

capture two-sided matching markets, fall into this family regardless of whether or not the network

is cyclic.

The (static) priority orders that achieve hindsight optimality are easy to describe for each acyclic

component, where we refer to the under-demanded agent type as the root. The design rule is that

if two matches are on the same path from the root, a higher priority is assigned to the match that

is farther away from the root.

Both policies, we show, are locally robust. That is, both policies that operate relative to a

(mis)estimated arrival-rate vector remain hindsight optimal as long as this demand vector lies in

the same (explicitly characterized) cone as the true arrival-rate vector.

Our findings do not extend to multi-way matching networks. In Kerimov et al. (2021), we

studied multi-way matching networks; those where matches may include more than two agent types.

In such networks, hindsight optimality is achievable under a periodic clearing policy with a carefully

chosen period length. Greedy policies that do not wait to form matches are not hindsight optimal.

This is because of complementarities that arise in multi-way matching networks. To perform

a high-value match that requires multiple types, we must wait for arrivals to multiple queues

to be simultaneously non-empty. Greedy policies rush to consume these agents by performing

neighboring low-value matches instead; see Example 3.2 in Kerimov et al. (2021). It is important

that for two-way matching networks, there exist greedy policies that achieve hindsight optimality:

in these, waiting is not necessary for hindsight optimality. From a mathematical standpoint, two-

way networks allow us to express the optimality gap explicitly in terms of the network parameters.

Our proofs are based on inferring bounds on regret from bounds on queue-lengths. This creates

an intimate connection between the optimal scaling for regret and the optimal scaling for queue-

lengths as a function of the network primitives.
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In a classic single-server queueing system with utilization ρ, the stationary queue-length is,

in expectation, proportional to 1/(1 − ρ). It is generally true that one cannot achieve smaller

stationary queue-length than 1/(1 − ρ) as long as there is some stochasticity in the arrival rates

or service times. In general networks, ρ is the network utilization and typically identified via a

deterministic static-planning problem akin to the one we use in this paper.

Matching networks like the one we study in this paper are fundamentally different. In the single-

server queue, capacity is “wasted” if there are no customers. In our matching networks, capacity

can be “inventoried”. An arriving agent that finds all queues empty will wait to be matched later.

Nevertheless, we find such a fundamental lower bound on queue-length. In Kerimov et al. (2021), we

proved that (except for trivial networks), the long-run average queue-length is at least of the order

of ε−1, where ε is the general position gap—a parameter that arises naturally from our matching

version of the static-planning problem. In this paper, we establish that the greedy longest-queue

policy achieves this lower bound at all times in two-way matching networks. Our narrower focus

also facilitates crisper regret bounds. That is, we are able to identify the constant before the optimal

scaling ε−1 and, in turn, reflect its dependence on the number of agent types in the network. From

a technical/analysis perspective, there is some unavoidable overlap with our earlier paper. The key

mathematical ingredient we import from our earlier paper is the aforementioned connection between

queue-lengths and regret. Once that connection is made, however, the current paper—because of

the algorithms/policies that did not appear in our earlier paper—requires its own separate analysis

to bound the queue-lengths. This analysis draws on both new graph-related results and stochastic

(Lyapunov function) results. The proof that the static priority policy achieves hindsight optimality

requires recursively creating a Lyapunov function, which might be of independent interest.

Beyond anchoring the policy construction (through the under-demanded agent types) and re-

vealing the optimal scaling for regret, the static-planning problem plays a central role in our analysis

of the stochastic system. The Lyapunov functions that we construct use our explicit characteriza-

tion of the optimal solution of the static-planning problem. Our Lyapunov function arguments for

longest-queue optimality is simpler than analogous proofs for capacitated queueing networks, and

stability of general class of max-weight policies (e.g., see Jonckheere et al. (2022)). As such, it serves

to introduce methods from the queueing theory toolbox to a broader (non-queueing) community

studying matching networks.
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1.1 Related literature

Two streams of literature are closely related to this work. The first stream concerns matching in

random graphs, and the other stream concerns matching in queueing systems.

Matching in random graphs. This literature studies random graphs, where agents arrive over

time and form an edge with existing agents in the system with some exogenous probabilities. A

large subset of this literature focus on matching, where all matches generate the same value in

contrast to our heterogeneous setting. Several studies find greedy policies to be asymptotically

optimal (either when the matching probability vanishes or when the arrival rates grow large) when

the objective is to minimize waiting times (Anderson et al., 2017; Ashlagi et al., 2019a), or, in the

presence of departures, when the objective is to maximize the number of matches (Akbarpour et al.,

2020) (unless departure times are observable), or, under both measures (Ashlagi et al., 2019b).

In our paper, we consider heterogeneous match values so that greediness alone does not specify

the policy completely. One must specify which match to perform when multiple matches are

available. Still, we are able to show that—in two-way matching networks—being greedy with

respect to a preoptimized network is hindsight optimal at all times (and truly optimal in the long-

run average sense). The network being two-way is a necessary condition for hindsight optimality of

greedy policies in our case, as greedy policies are suboptimal in general networks (Kerimov et al.,

2021).

Several papers study dynamic matching in two-sided networks with heterogeneous match values

and departures. Blanchet et al. (2020) consider a model, in which match values are generated from

a continuous distribution (in contrast to our finite setting). The paper finds that greedy threshold

policies, which assure that the market is sufficiently thick, are (nearly) asymptotically optimal as

the market grows large. Collina et al. (2020) interpolate between immediate and delayed actions

in order to achieve an approximation guarantee.

Matching in queues. Intuitively speaking, agents waiting in queues at a given time correspond

to match values that have not yet been realized. Achieving the optimal scaling for regret, as a

function of the general position gap ε, is thus intimately linked to the minimal achievable queue-

length scaling. Within our analysis, we establish that ε−1 is the minimal scaling for queue-length

and it is achievable.

This question of minimal stationary queue-length scaling has a long history in the capacitated

queueing networks literature. In the simplest of these—the single station single server queue—the

5



stationary delay is of the order of 1/(1−ρ), where ρ is the utilization. The single server is “perfectly

efficient”, since the server idles only when there is no work. In more general networks, in contrast,

some servers might be idle and have nothing to work on although there is work (somewhere else)

in the network. The natural question is then whether there is a centralized policy, under which

a scaling of 1/(1 − ρ) is achievable. In capacitated queueing networks, ρ is identified by a static

planning problem; see e.g. Harrison and Lopez (1999). Shah et al. (2014); Maguluri and Srikant

(2016) show that max-weight policies are those that achieve the optimal scaling. In matching

networks, agents play the dual role of demand and capacity. Nevertheless, a static matching

problem characterizes the general position gap and, in turn, the optimal stationary queue-length

scaling. We prove that a suitably defined longest-queue policy (an instance of max-weight) achieves

the optimal stationary queue-length scaling.

Stationarity is, itself, non-obvious in matching models. Networks of the type we study here—

where arrivals are sequential—are generally unstable. Conditions on the model and primitives that

guarantee stability are studied in, for example, Mairesse and Moyal (2016); Bušić et al. (2013).

The control policy matters for stability. It is sometimes fixed—as in the growing body of work

on the stability of First-Come-First-Serve two-way matching networks (e.g., Adan et al. (2018))

and sometimes chosen explicitly to stabilize the network Jonckheere et al. (2022). It is a by-

product of our analysis that with sequential arrivals, the network is stabilizable as long as the

static planning problem solution induces a residual network with odd cycles (which makes the

network, in particular, non-bipartite).

The minimization of holding costs has been studied in the literature; see, e.g., Bušić and Meyn

(2015); Gurvich and Ward (2014); Cadas et al. (2019) that focus on holding-cost minimization. Our

focus is on match value maximization, similar to Nazari and Stolyar (2019). The goals, however,

are different. Nazari and Stolyar (2019) develops a policy that maximizes the long-run average

value while stabilizing the queues. They are able to do so without knowing the arrival rates in

advance; see also Aveklouris et al. (2021). Instead, we assume that arrival rates are known, and we

focus on all-time regret—a stronger notion than long-run average optimality—and its scaling.

This paper is a follow-up to Kerimov et al. (2021), where we studied multi-way matching

networks and proposed a batching policy that achieves the minimal all-time regret scaling. In

general, we show there, that acting greedily is suboptimal. In this paper we show that when

restricting attention to two-way matching networks, there exist greedy policies that can achieve

the optimal all-time regret scaling. The restriction to two-way networks allows for a more explicit
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characterization of the regret bound in terms of the network parameters. Finally, we show how

the network structure can be used to define a static priority policy that achieves constant regret.

Of independent interest may be our recursive construction of a Lyapunov function for the static

priority policy.

In our paper, we prove that—in two-way matching networks—one can achieve constant regret

while being truly greedy. Under our policies, matches are performed as long as there is at least one

feasible match available. The only choice is which of the multiple feasible matches to perform. A

subsequent work Gupta (2022) introduces a weaker version of greediness, where the policy commits

an item to a match upon arrival even if that match is not available at that point in time. This

policy might leave items in queues even when there are matches available, but the weaker definition

supports near optimality beyond two-way networks. Importantly, the policies are structurally

different.

Notation. For real numbers x and y, we use x ∧ y = min{x, y}. We use [n] to denote the set of

integers {1, 2, . . . , n}. We follow the accepted meaning of little o, big O and big Ω. For example,

at = Ω(bt) for all t > 0 (for non-negative at, bt) means that lim inft→∞ at/bt > 0. Missing proofs in

the body of the paper appear in the appendix.

2 Model

Matching network. There is a finite set of agent types A = {1, 2, . . . , n}, a finite set of matches

M = {1, . . . , d}, and a match value rm > 0 for each match m ∈ M. Each match m ∈ M is

characterized by two participating agent types, denoted by the set A(m). The network topology is

specified by a matching matrix M ∈ {0, 1}n×d, where Mim = 1 if and only if i ∈ A(m). There is no

harm in assuming that each agent type participates in at least one match. Each agent type i ∈ A

is associated with an arrival probability λi > 0;
∑

i∈A λi = 1. We refer to the tuple G = (M,λ, r)

as the matching network.

The matching network induces a weighted undirected simple graph, where the set of vertices is

A and the set of edges is M: there is an edge between i, j ∈ A with weight rm if and only if there

exists m ∈ M such that A(m) = {i, j}. We say that i, j ∈ A are neighbors if A(m) = {i, j} for

some m ∈ M. With slight abuse of notation, we denote this induced simple graph also by G. We
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assume without loss of generality that G is connected.

Dynamics. Time is discrete, and there is a single agent arrival every period. The arriving agent

is of type i ∈ A with probability λi. We maintain a separate queue for each agent type, and agents

join their type-dedicated queues upon arrival. All queues are empty at time t = 0.

Match m ∈ M is available at time t if and only if the queues of both agent types in A(m) are

non-empty at that time. Performing m ∈M once requires one agent from each type in A(m) and

generates a value of rm. Matched agents leave the market immediately.

The process Ati counts the number of arrivals to queue i ∈ A until (and including) time t. The

sequence of events in a time period is: an agent arrival is realized, then matches are performed, and

queue-lengths are updated. The process Qti tracks the number of agents waiting in queue i ∈ A at

time t, after all matches for this period have been performed.

Matching policy. A matching policy is a mapping from histories of arrivals and performed matches

to a (possibly empty) set of matches. Given the history, the matching policy determines how many

times each match is performed at each time period. An admissible matching policy is an increasing

non-anticipative process Dt := (Dt
m : m ∈ M, t ≥ 0), where Dt

m is the number of times match

m ∈M is performed by time t; Dt must satisfy

Qt = At −MDt for all t ≥ 0. (1)

We assume that Dt is right-continuous with left limits (RCLL). ∆Dt
m := Dt

m − Dt−1
m is then

the number of times match m ∈ M is performed at time t > 0. We add the superscript D on

expectations to make explicit the dependence on the policy, where the superscript is omitted when

the context is clear. The family of all admissible matching policies is denoted by Π.

Greedy policies are a large family of admissible policies. These policies perform, whenever

possible, a match among those available within a prespecified set.

Definition 2.1 (greedy policy). Given a matching network G and a subset S ⊆M (not necessarily

strict), we say that a policy D is a greedy policy with respect to S, if

(i) a match is performed whenever at least one match becomes available to perform in S, and

(ii) matches in M\S are never performed, i.e., Dt
m = 0 for all m ∈M\S and for all t ≥ 0.

Note that under any greedy policy, at most one match can be performed at any time period,
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since exactly one agent arrives every period. Note that when a match is performed, it must include

the arriving agent. Definition 2.1 does not specify which match to perform when multiple matches

are available, which can happen upon an agent arrival. Which available match to perform remains

as a degree of freedom in the policy definition. This choice will differ between two greedy policies

that we will introduce.

Defining a greedy policy relative to a set S, that could be M or a strict subset thereof, gives

us flexibility. Our proposed policies will be greedy relative to a strict subset of M.

Optimality criterion. The expected total value generated by time t under a policy D is given by

RD,t := ED[r ·Dt].

For any fixed t, the optimal value R∗,t := maxD∈ΠRD,t is trivially attained by the policy, which

takes no action until time t and follows an optimal (static) weighted matching at time t. That is,

R∗,t := E


max r · y

s.t. My ≤ At

y ∈ Zd≥0

 ,

where the expectation is taken over all realizations of At.

The function R∗,t can be interpreted as the hindsight upper bound at time t, i.e., the decision

maker is allowed to correct past decisions so that previously performed matches may be revoked to

perform new ones at all times. A matching policy is hindsight optimal if it is, at all times, almost

as good as the optimal value.

Definition 2.2 (hindsight optimality). A matching policy D is hindsight optimal if

R∗,t −RD,t = O(1) for all t > 0,

which implies, in particular, RD,t/R∗,t = 1−O(1/t) for all t > 0.

The existence of a hindsight optimal matching policy means that the tension between short-

and long-term objectives is essentially moot; a good performance at time t0 does not necessitate a

significant compromise at time t1 > t0. Observe that a hindsight optimal matching policy is also
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optimal in the long-run average sense:

R∗,T −RD,T

R∗,T
= O(1/T )→ 0 as T →∞. (2)

3 Main results

We identify two greedy policies that are hindsight optimal, one is state-dependent and the other

one is state-independent. The policies (and their analyses) use properties of the optimal solution

of a static (offline) linear matching problem.

3.1 Preliminaries

We begin with some preliminaries before presenting our main results.

Static-planning and general position. Relaxing the integrality constraints and applying Jensen’s

inequality gives the following upper bound on R∗,t:

R∗,t = E


max r · y

s.t. My ≤ At

y ∈ Zd≥0

 ≤
max r · x

s.t. Mx ≤ λt

x ∈ Rd≥0.

With the change of variables z = x/t, we can write the upper bound in standard form as follows:

max r · z

s.t. Mz + s = λ

z ∈ Rd≥0, s ∈ Rn≥0.

(SPP)

We refer to this formulation as the static-planning problem (SPP). The following definition intro-

duces the notion of general position that captures the level of stability in a matching network and

plays a crucial role in our main results. In fact, general position is a necessary condition to achieve

hindsight optimality (Kerimov et al., 2021, Example 3.1).

Definition 3.1 (general position). A matching network G satisfies the general position condition

(GP) if (SPP) has a unique non-degenerate optimal solution (z∗, s∗), i.e., all n basic variables in

this solution are strictly positive. Define the sets

M+ := {m ∈M : z∗m > 0}, M0 :=M\M+, Q+ := {j ∈ A : s∗j > 0} and Q0 := A\Q+,
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where M+ is the set of active matches, M0 is the set of redundant matches, Q+ is the set of

under-demanded (non-empty) queues, and Q0 is the set of over-demanded (empty) queues. The

general position gap is defined as

ε := min
m∈M+

z∗m ∧ min
j∈Q+

s∗j .

Residual graph. To achieve hindsight optimality, any matching policy must mostly avoid per-

forming redundant matches (Kerimov et al., 2021, Remark 3.1). Accordingly, the policies that

we will propose are greedy with respect to the set S = M+ ( M. Let G′ := G − M0 be the

(SPP)-residual graph, which is obtained from G by removing all redundant matches (every m ∈M

with z∗m = 0). The (SPP)-residual graph G′ is then a union of (possibly) multiple components, and

we write G′ = ∪k∈[K]Ck, where Ck is the kth component of G′. Since G is a simple graph, any edge

(match) removal can increase the number of components at most by 1; K ≤ |M0|+ 1. Let A(Ck)

be the set of all vertices (queues) in Ck, and let M(Ck) be the set of all edges (matches) in Ck for

all k ∈ [K].

The (SPP)-residual graph G′ has some useful properties, which will be crucial in the design and

analysis of our policies.

Lemma 3.1. Assume that G satisfies GP. Then each component Ck, k ∈ [K], of the (SPP)–

residual graph G′ satisfies the following properties: (i) Ck contains at most one cycle, (ii) if Ck does

not contain a cycle, then Ck is a tree and |A(Ck) ∩ Q+| = 1, and (iii) if Ck contains a cycle, then

the cycle is of odd length and |A(Ck) ∩Q+| = 0.

The proof of Lemma 3.1 appears in Appendix A and uses simple linear programming variable-

counting arguments. This lemma will be crucial for the construction of our static priority policy.

When each component of G′ is a tree, the single under-demanded queue will serve as an anchor

in determining the priority order over matches. Informally, the priority order of a match will be

proportional to the distance from this queue.

3.2 Optimality of the longest-queue policy

Recall that that under a greedy policy, in the sense of Definition 2.1, a match can be performed only

upon an arrival of an agent. The longest-queue policy is a greedy state-dependent policy defined

as follows.
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Figure 1: In all figures, arrival probabilities and match values are indicated on vertices and edges, respectively.
(TOP) A matching network that satisfies GP with M0 = {2, 5} (red edges) and Q+ = {3} (yellow vertex). The
scalar λ is chosen so that

∑
i∈A λi = 1. (BOTTOM) The corresponding (SPP)–residual graph G′.

Definition 3.2 (longest-queue policy). Given a matching network G, the longest-queue policy,

denoted by LQ(M+), is a greedy policy with respect to M+ such that

(i) At any time t > 0, upon arrival of an agent (say type−i), perform the available match

m ∈ M+ such that A(m) = {i, j} and j ∈ arg max{Qtk : A(m′) = {i, k} for some m′ ∈ M+},

where ties are broken arbitrarily, and

(ii) at the end of each time period (after a match is performed), all agents of types i ∈ Q+ leave

the market unmatched.

Upon arrival, the arriving agent is matched to an agent in a neighboring queue (given that there

is a non-empty one) that contains the greatest number of agents. Consider, for example, the cyclic

component in Figure 1(BOTTOM). Suppose that Qt7 > Qt5 > 0 at some time t, and there is an

arrival to queue−6 next. Matches 6 and 7 can both be performed upon arrival but match−7 will

be performed because Qt7 > Qt5 > 0. If Qt7 = Qt5 > 0, the choice between performing match−6 and

match−7 is arbitrary.

12



In Definition 3.2, all agents of type i, i ∈ Q+, are “rejected” at the conclusion of a period. In

particular, an agent of type i ∈ Q+ can only be matched upon arrival, which happens if one of its

neighboring queues is non-empty. These rejections simplify our analysis because we do not have

to keep track of the number of agents in queues in the set Q+. The process (Qti : i ∈ Q0, t ≥ 0) is

itself a Markov chain and, we show, stable under our policies.

Our analysis reveals that such rejections do not sacrifice optimality, and it is practically reason-

able to reject these agents, otherwise corresponding queues will grow without a bound; see Lemma

5.1.

Our first result is that LQ(M+) is hindsight optimal with a ε−1 regret scaling. This, with the

exception of trivial cases, is also a lower bound on regret scaling; see (Kerimov et al., 2021)[Theorem

3.1].

Theorem 3.1 (hindsight optimality for two-way matching networks). Assume that G satisfies GP,

and let ε be the GP gap. Then LQ(M+) is hindsight optimal:

R∗,t −RD,t ≤ rmaxn

ε

(
1 + λ−1

min1{t ≤
n

ελmin
}
)
,

where rmax = maxm∈M+ rm and λmin = mini∈Q0 λi.

3.3 Optimality of a static priority (state-independent) policy in bipartite match-

ing networks

We are also interested in greedy policies that follow a static priority order over non-redundant

matches, and in particular, make decisions independent of the state of the network. We will

establish that there exists a hindsight optimal static priority policy, given that GP is satisfied and

any component in the (SPP)-residual graph G′ is a tree; an important family of matching networks

satisfying this condition is bipartite matching networks.

Definition 3.3 (static priority policy). Given a matching network G, the static priority policy,

denoted by SP (M+, p), is a greedy policy with respect to M+ such that

(i) p : M+ → {1, . . . , |M+|} is a bijective static priority order. We say that m ∈ M+ has a

higher priority than m′ ∈M+ if and only if p(m) < p(m′),

(ii) at any time t > 0, upon arrival of an agent (say type−i), perform the highest priority match

m ∈M+ among those available, where m ∈ arg min{p(m′) : i ∈ A(m′)}, and
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(iii) at the end of each time period (after a match is performed), all agents of type−i, i ∈ Q+,

leave the market unmatched.

Determining the static priority order p(·). Assume that any component Ck, k ∈ [K], in

the (SPP)-residual graph G′ is a tree. Fix some Ck, where the following procedure is applied on

each component separately. Per Lemma 3.1, there is a unique queue, denoted by k+, such that

A(Ck)∩Q+ = {k+}. We say that p(·) is a topological order if given any path starting from k+ to any

i ∈ A(Ck)\{k+}, for any two matches (edges) on this path m,m′ ∈ M(Ck), we have p(m) < p(m′)

if and only if m is farther away from k+ than m′ when we traverse the path starting from k+ to i.

Note that there is at least one topological order p(·), as the path between k+ to any i ∈ A(Ck)\{k+}

is unique, since Ck is an acyclic component.

Our second result shows that there exists a static priority policy, which is hindsight optimal.

Theorem 3.2 (hindsight optimality for two-way matching networks with acyclic residual graphs).

Assume that G satisfies GP, and any component in the (SPP)-residual graph G′ is a tree. Then

SP (M+, p), where p is any topological order, is hindsight optimal:

R∗,t −RD,t ≤ Γ for all t > 0,

where Γ > 0 is a constant that does not depend on t.

We conclude this section with some remarks regarding Theorems 3.1 and 3.2.

Remark 3.1.

(i) Theorem 3.2 holds for any bipartite matching network G that satisfies GP. This is because

per Lemma 3.1, any component Ck in the (SPP)–residual graph G′ is a tree, as G does not

contain any odd cycles.

(ii) In contrast to Theorem 3.1, where we identified the dependence of the constant regret on the

general position gap ε, in Theorem 3.2 we could only establish that the regret is constant at

all times. However, this result still implies that SP (M+, p) is optimal in the long-run average

sense; see (2). We believe that SP (M+, p) also achieves the optimal scaling of ε−1 for regret,

as simulations in Example 6.1 suggest.
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(iii) We do not know whether there exists a hindsight optimal static priority policy, when there

is a component Ck in the (SPP)-residual graph G′ that contains an odd cycle. Note that the

tree structure is central to the design of a priority policy.

(iv) The topological order for the static priority policy is generally not unique (unless G is a path).

For example in Figure 2, another possible topological order is 5 � 1 � 4 � 2 � 3 � 6 � 7.

λ1

λ2

λ7 λ8λ3

λ4

λ5

λ6

r3(6)r6(5) r7(7)

r2(3) r4(4)

r5(2)r1(1)

Figure 2: A tree component Ck with k+ = 6. One possible topological order p(·) is indicated on the matches:
1 � 5 � 2 � 4 � 6 � 3 � 7, where m � m′ means p(m) < p(m′).

The rest of the paper is organized as follows. In §4, we explicitly characterize the optimal solution

of (SPP), which plays a key role in the design and analysis of our matching policies. In §5, we

prove hindsight optimality of our matching policies. Finally in §6, we provide numerical examples

to provide further insights about our matching policies.

4 Properties of the (deterministic) static-planning problem (SPP)

This section uncovers properties of the matching network and the static-planning problem (SPP),

which are essential in the design and (stochastic) analysis of our matching policies.

The following theorem gives an explicit characterization of the optimal solution of (SPP). The

characterization is instrumental as it captures permitted perturbation for λ to maintain the optimal

basis in terms of the general position gap ε. This is a generalization of (Kerimov et al., 2021,

Theorem 4.1) to matching networks with cyclic components.
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Theorem 4.1 (explicit optimal solution of (SPP)). Assume that G satisfies GP. Let (z∗, s∗)

be the unique non-degenerate optimal solution of (SPP) with M+ = {m ∈ M : z∗m > 0} and

Q+ = {j ∈ A : s∗j > 0}. Then there exist |M+| vectors ym ∈ {−1,−1/2, 0, 1/2, 1}n and |Q+|

vectors yj ∈ {−1, 0, 1}n such that

z∗m(λ) := ymλ > 0 for all m ∈M+ and s∗j (λ) := yjλ > 0 for all j ∈ Q+.

Surplus vectors. The explicit construction of the y vectors (surplus vectors) in Theorem 4.1 plays

a key role in the design and analysis of our matching policies. The following procedure describes

the construction for each of the components in the (SPP)-residual graph G′. Fix a component Ck,

be it cyclic or a tree; see Lemma 3.1.

• Tree components. First assume that Ck is a tree. The corresponding surplus vectors are

already constructed in (Kerimov et al., 2021, §4), but we repeat it here for completeness.

Let k+ be the unique queue in A(Ck) ∩ Q+ per Lemma 3.1. Let U0 := {i ∈ A(Ck) ∩ Q0 :∑
m∈M+

Mim = 1}. This is the set of queues in A(Ck) ∩ Q0 participating in exactly one

non-redundant match; U0 is a subset of the leaves of Ck. Since Ck is a tree, U0 is clearly

a non-empty set. For all i ∈ U0, we first traverse the unique path between k+ and i in Ck
starting from k+. Any edge between i′ ∈ A(Ck) and j′ ∈ A(Ck) on this path is marked with

the direction it is traversed, i′ → j′ or j′ → i′. Denote the resulting directed graph by
−→
Ck;

e.g., see Figure 3. We refer to k+ as the root of
−→
Ck. Since Ck is a tree and the root k+ is

unique, every edge in this component is marked with a unique direction.

For each i ∈ A(Ck), we let Ti be the subtree rooted at i, where Ti is the union of all directed

paths from i to j ∈ U0. Note that Tk+ is
−→
Ck itself. Let A(Ti) be the set of queues in Ti.

Let d(i, j) be the length of the directed path from i ∈ A(Ck) to j ∈ A(Ck) in
−→
Ck with the

convention d(i, i) = 0. For each i ∈ A(Ck), we then define the surplus vector yi ∈ {−1, 0, 1}n

as follows:

(yi)j =


0, if j ∈ A\A(Ti),

1, if d(i, j) ≡ 0 (mod 2),

−1, if d(i, j) ≡ 1 (mod 2).

(3)
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λ1 λ2 λ3 λ4 λ5

λ6λ7 λ8
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r2 r4

r5r1

Figure 3: (LEFT) A tree component Ck with k+ = 6 and U0 = {1, 5, 7, 8} ⊆ A(Ck). (RIGHT) The corresponding

directed graph
−→
Ck.

Note that since d(k+, k+) = 0, in particular, we have (yk+)k+ = 1. Finally, by the construction

of
−→
Ck, for each m ∈ M(Ck), there is a unique queue i(m) ∈ A(Ck) such that the marked

direction on m is incoming to i(m). Then we define the surplus vector for each m ∈ M(Ck)

with the vector yi(m):

ym := yi(m) for all m ∈M(Ck).

For example in Figure 3, the surplus vector for queue 3 is y3 = [1,−1, 1,−1, 1, 0, 0, 0] and

the surplus vector for match 2 is equal to the surplus vector for queue 2, which is y2 =

[−1, 1, 0, 0, 0, 0, 0, 0].

• Cyclic components. Let us first consider the case when Ck is just a cycle of odd length.

Let A(Ck) = {1, . . . , 2n+ 1} and M(Ck) = {1, . . . , 2n+ 1}, where A(m) = {m,m+ 1} for all

m ∈ [2n] andA(2n+1) = {1, 2n+1}. SinceA(Ck)∩Q+ = ∅ per Lemma 3.1, we must have that

λi = z∗i−1 +z∗i for all 2 ≤ i ≤ 2n+1 and λ1 = z∗2n+1 +z∗1 . This yields
∑2n+1

i=1 λi = 2
∑2n+1

m=1 z
∗
m,

and solving these equations we get

z∗m =
1

2

2n+1∑
i=1

λi −
( ∑

j<m+1
j≡m (mod 2)

λj +
∑
j>m

j≡m (mod 2)

λj

)
for all m ∈ [2n], (4)

z∗2n+1 =
1

2

2n+1∑
i=1

λi −
( ∑
j≡0 (mod 2)

λj

)
. (5)
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Using (4) and (5), for any m ∈ [2n], we define the surplus vector ym ∈ {−1/2, 0, 1/2}2n+1 as

follows:

(ym)j =


−1/2, if j < m+ 1 and j ≡ m (mod 2),

−1/2, if j > m and j ≡ m (mod 2),

1/2, otherwise.

Similarly, we define the surplus vector for match (2n+ 1) as follows:

(y2n+1)j =

 −1/2, if j ≡ 0 (mod 2),

1/2, otherwise.

By construction, observe that we have z∗m = ymλ for all m ∈M(Ck).

Let us now expand and consider a component Ck that is cyclic. Per Lemma 3.1, this component

contains exactly one cycle, and this cycle is of odd length. Denote this odd cycle by Codd,

and let A(Codd) be the set of queues included in this odd cycle. Define the set U≥3 := {i ∈

A(Codd) : deg(i) ≥ 3}, i.e., the set of queues in A(Codd) participating in at least three non-

redundant matches in Ck. Fix some i ∈ U≥3. In other words, i participates in at least three

non-redundant matches in Ck, and in particular, i participates in at least one non-redundant

match that is not a part of Codd.

Remove both edges (matches) that i participates in Codd. This decomposes Ck into two

subgraphs and separates i from Codd. Consider the resulting subgraph that contains i. By

construction, this component is a tree. Temporarily, we will assume that i plays the role of k+

in the construction of the surplus vectors for tree components. Hence, we define the surplus

vectors for all matches contained in this subgraph as in the previous construction for tree

components, and we let yi be the temporary surplus vector for i under this setting, where i

plays the role of k+. After applying this procedure for all i ∈ U≥3, we define λi := yiλ, and

we construct the remaining surplus vectors for all matches included in Codd by replacing λi

by λi in (4) and (5); e.g., see Figure 4.
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Figure 4: A cyclic component with U≥3 = {3}. We remove match 3 and match 5, and we consider the resulting
subgraph that contains queue 3, which is a tree. Our procedure first yields the vectors y1 = [1, 0, 0, 0, 0] and
y2 = [−1, 1, 0, 0, 0], for match 1 and match 2, respectively. Then the temporary surplus vector for queue 3 is
y3 = [1,−1, 1, 0, 0]. Following the procedure, we set λ3 = y3λ = λ3−λ2 +λ1. Finally solving (4) and (5), where λ3 is
replaced by λ3, gives z∗3 = 1

2
(−λ5+λ4+λ3−λ2+λ1), z∗4 = 1

2
(λ5+λ4−λ3+λ2−λ1) and z∗5 = 1

2
(λ5−λ4+λ3−λ2+λ1).

Hence, the surplus vectors for matches 3, 4 and 5 are y3 = [1/2,−1/2, 1/2, 1/2,−1/2], y4 = [−1/2, 1/2,−1/2, 1/2, 1/2]
and y5 = [1/2,−1/2, 1/2,−1/2, 1/2], respectively.

The proof of Theorem 4.1 is now immediate.

Proof of Theorem 4.1. Per (Kerimov et al., 2021, Theorem 4.1), for any tree component Ck, we

have z∗m = ymλ for all m ∈ M(Ck) and s∗k+ = yk+λ, where k+ is the unique queue in A(Ck) ∩ Q+.

For any cyclic component Ck, we have A(Ck) ∩ Q+ = ∅, and the construction based on (4) and

(5) immediately yields z∗m = ymλ for all m ∈ M(Ck). Finally, strict positivity follows from the

assumed non-degeneracy under GP.

We next characterize permitted perturbation for λ in terms of the general position gap ε, under

which the optimal basis remains the same. By Theorem 4.1, for any other arrival-probability vector

λ̃, where λ̃ is in the cone

Y :=
{
λ′ ∈ Rn+ : ymλ′ > 0 for all m ∈M+ and yjλ′ > 0 for all j ∈ Q+

}
,

the optimal basis remains the same. Thus, the following is an immediate corollary.

Corollary 4.1 (right-hand side perturbations). Assume that G satisfies GP. Let (z∗, s∗) be the

unique non-degenerate optimal solution of (SPP) with M+ = {m ∈ M : z∗m > 0} and Q+ = {j ∈

M : s∗j > 0}. Then the same basis remains optimal for any λ̃ > 0 such that λ̃ = λ + ζ, where

ζ ∈ Rn satisfies ymζ ≥ −ε for all m ∈M+ and yjζ ≥ −ε for all j ∈ Q+.

5 Analysis

5.1 Preliminary results

To establish the hindsight optimality of any matching policy, it suffices that all queues in Q0 remain

bounded in expectation. This is shown in the following lemma, which is an analog of the optimality
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test in Kerimov et al. (2021)[Lemma 4.1].

Lemma 5.1 (optimality test). Suppose that GP holds. Let (z∗, s∗) be the unique non-degenerate

optimal solution of (SPP). Suppose the following conditions hold under a policy D:

(i) no agent of type i ∈ Q0 leaves the market unmatched,

(ii) no matches in M0 are performed, i.e., Dt
m = 0 for all m ∈M0 and for all t > 0, and

(iii)
∑

i∈Q0
ED[Qti] ≤ B for all t > 0, where B > 0 is a constant.

Then D is hindsight optimal and R∗,t−RD,t ≤ rmaxB for all t > Bλ−1
min, where rmax := maxm∈M+ rm

and λmin := mini∈Q0 λi.

Observe that, by construction, LQ(M+) satisfies the first two conditions of Lemma 5.1. We

will use Lyapunov function arguments to establish that condition (iii) of Lemma 5.1 holds under

our policies. The following is a useful version of a standard tool.

Lemma 5.2 (Glynn and Zeevi (2008), Corollary 4). Let X = (Xt : t ≥ 0) be a discrete-time

S-valued Markov chain with transition kernel P , and suppose f : S → R is non-negative. If there

exists a non-negative function g : S → R and a constant c for which

∫
S
P (x, dy)g(y)− g(x) ≤ −f(x) + c for all x ∈ S, (6)

then ∫
S
π(dx)f(x) ≤ c, (7)

for any stationary distribution π of X.

The function g in (6) is a so-called Lyapunov function. As is often the case, the key challenge

is to identify suitable functions f and g.

Note that Lemma 5.2 gives a moment bound in stationary distribution. We will be interested in

generating moment bounds on the expected size of queues in Q0 for any time t > 0. The following

lemma will be useful to establish this. The lemma couples two stochastic systems, one is initialized

with Q0 = 0 and the other one is initialized arbitrarily, and relates the total number of agents

waiting in both systems at any time t.

The next lemma shows that greedy matching policies are non-expansive. Namely, the gap

between two greedy-operated systems—that differs only in their initial queue-lengths—does not

grow with time; see Moyal and Perry (2017) for a related result.
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Lemma 5.3. Let D be any greedy policy as in Definition 2.1 such that at the end of each time

period (after a match is performed), all agents of type−i, i ∈ Q+, leave the market unmatched. Let

H be a matching network that is identical to G except the initialization of the queue-length vector

at t = 0. Let (Ht : t ≥ 0) be the corresponding queue-length vector to H, and consider an arbitrary

initialization for H. Let h :=
∑

i∈Q0
H0
i . Then under D, we have

∣∣∣ ∑
i∈Q0

Qti −
∑
i∈Q0

Ht
i

∣∣∣ ≤ h for all t ≥ 0. (8)

Proof of Lemma 5.3. We refer to agents present at t = 0 in H as labeled. We also say that a

performed match is labeled if it contains a labeled agent, and the match is unlabeled otherwise.

Let us first prove that
∑

i∈Q0
Ht
i ≤ h+

∑
i∈Q0

Qti for all t ≥ 0. Given the same arrival process,

observe that the first ever match in both systems cannot be performed only in G; it is possible that

the first ever match will be performed in both systems at the same time. Consider all times when

a match is performed in G but not in H. Consider such a time, say t, and assume that the arriving

agent at time t (that makes at least one match available to perform in G) is of type−i and matches

to some agent of type−j. Since both systems are equipped with the same arrival process and j is

not present in H at time t (otherwise there would be at least one available match to perform in H),

this implies that j was already matched in H at some time t′ < t. Therefore, at any time t > 0, the

total number of performed matches in H is greater than or equal to the total number of performed

matches in G. Note that there are only two types of matches, where either an arriving agent type

is in Q0 and matches another agent type in Q0 that is present in the system, or an arriving agent

type is in Q+ and matches an agent type in Q0. Thus, if a match is performed in G or H, then∑
i∈Q0

Qti or
∑

i∈Q0
Ht
i decreases by 1, respectively. This proves that

∑
i∈Q0

Ht
i ≤ h +

∑
i∈Q0

Qti

for all t ≥ 0.

Next we show that
∑

i∈Q0
Qti ≤ h +

∑
i∈Q0

Ht
i for all t ≥ 0. Given the same arrival process,

observe that the first ever unlabeled match in both systems cannot be performed only in H. We

claim that the total number of performed unlabeled matches in G is greater than or equal to the

total number of performed unlabeled matches in H. Consider a time t such that an unlabeled

match is performed in H (say type-i arrives and matches to type−j), but not in G. Similar to

the previous arguments, this implies that j was already matched in H at some time t′ < t. Since

any performed match in G is unlabeled by definition, this proves the claim. Finally, since one
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can perform at most h many labeled matches in H under any arrival process, we must have that∑
i∈Q0

Qti ≤ h+
∑

i∈Q0
Ht
i .

5.2 Proof of Theorem 3.1

The proof will apply the optimality test Lemma 5.1. Recall that by construction, LQ(M+) satisfies

the first two conditions of Lemma 5.1. It remains to prove the third condition, which will be done

by leveraging Lyapunov function arguments.

Recall that the (SPP)-residual graph G′ = ∪k∈[K]Ck consists of components such that for any

k ∈ [K], Ck is either a tree with |A(Ck) ∩ Q+| = 1, or cyclic, in which case |A(Ck) ∩ Q+| = 0; see

Lemma 3.1. Since our aim is to prove that all queues in Q0 remain bounded in expectation, we

focus then on a single component in our analysis and treat G as the only component. The analysis

is then the same for all the other components. The following is the main ingredient in the proof of

Theorem 3.1.

Lemma 5.4. Assume that G satisfies GP with M0 = ∅. Define L(Qt) :=
∑

i∈Q0
(Qti)

2, t ≥ 0.

Then under LQ(M+), the Markov chain (Qti : i ∈ Q0, t ≥ 0) is ergodic. Moreover, L(Qt) decreases

in expectation:

E[L(Qt+1)− L(Qt) | Qt] ≤ −2
ε

n
‖Qt‖1 + 1 for all t ≥ 0. (9)

The proof of Lemma 5.4 is given in the next subsection. We first apply it to complete the proof

of Theorem 3.1.

Proof of Theorem 3.1. We first prove the upper bound. The drift property (9) in Lemma 5.4

implies that the Markov chain (Qti : i ∈ Q0, t ≥ 0) is positive recurrent; e.g., see (Robert, 2003,

Corollary 8.7). Given Lemma 5.4, moment bounds in the steady-state follow trivially from Lemma

5.2, where the functions f and g are 2 εn‖Q
t‖1 and L(Qt), respectively. In particular, under the

Markov chain’s unique stationary distribution, which we denote by π, we have

Eπ[‖Q0‖1] ≤ n

2ε
, (10)

where Q0 ∼ π. Note that we still need to establish a similar moment bound for any time t > 0 (not

only for the steady-state). Per Lemma 5.3 and (10), we conclude that under LQ(M+), we have
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∑
i∈Q0

E[Qti] ≤ n/ε for all t > 0. Then by Lemma 5.1, we have

R∗,t −RLQ(M+),t ≤ rmaxn

ε
for all t >

n

ελmin
.

Note that regret is upper bounded by rmaxt for any fixed time t > 0. Hence, LQ(M+) is hindsight

optimal as stated.

Remark 5.1 (maximizing the number of matched agents in non-bipartite setting). If each compo-

nent in the (SPP)-residual graph G′ is cyclic, then Theorem 3.1 has an immediate implication for

the objective of maximizing the total number of matched agents in the long-run average sense.

A matching policy D matches (MDt)i many agents of type i by time t. Recall that MDt =

At −Qt for all t ≥ 0 per (1) so that the long-run average number of matched agents is given by

lim inf
T→∞

1

T
ED
[∑
i∈A

ATi −
∑
i∈A

QTi

]
≥
∑
i∈A

λi − lim sup
T→∞

1

T

∑
i∈A

ED[QTi ].

Within the proof of Theorem 3.1, we showed that under LQ(M+), we have
∑

i∈Q0
Eπ[Q0

i ] =

O(ε−1), where π denotes the steady-state of the Markov chain (Qti : i ∈ Q0, t ≥ 0), and Q0 ∼

π. In particular, we have lim supT→∞
1
T

∑
i∈Q0

E[QTi ] = 0 (note that it is sufficient to have∑
i∈Q0

Eπ[Q0
i ] = O(1) to have this limit).

Since each component of G′ is cyclic, we have Q0 = A per Lemma 3.1 so that
∑

i∈A Eπ[Q0
i ] =

O(ε−1), and in turn, we have

lim inf
T→∞

1

T
E
[∑
i∈A

ATi −
∑
i∈A

QTi

]
≥
∑
i∈A

λi.

Since
∑

i∈A λi is an upper bound on the long-run average number of matched agents, LQ(M+) is

optimal for this objective.

Remark 5.2 (stability of matching models). If each component of the matching network has

odd cycles, then Q+ is an empty set, and the process Q(t) is (without any rejections) stationary

with the expected queue-length bounded as in (10). This stability is consistent with the general

stabilizability, proved in Mairesse and Moyal (2016), of dynamic matching in non-bipartite graphs.
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5.3 Proof of Lemma 5.4

Throughout this subsection, we simplify the notation by assuming that q ∈ Zn≥0 is the initial state

of the queues (t = 0), where there is no available matches to perform. Let Q1 be the state of the

queues at time t = 1 after all matches for this period have been performed. We also write the

conditional expectation given a matching policy D and the initial state q as EDq [·].

Without loss of generality, we assume that G satisfies GP withM0 = ∅ so that the proof focuses

on a single component. We use the following quadratic Lyapunov function

L(q) =
∑
i∈Q0

q2
i , q ∈ Zn≥0.

It will be convenient in this subsection to denote match m ∈M sometimes by (i, j), where A(m) =

{i, j}. Also, it will be convenient to write with some abuse of notation Mi,(i,j) := Mij .

Finally, we also define ∆A1 := A1 − A0 and ∆D1 := D1 −D0, i.e., the vector that tracks the

number of arrivals at time t = 1 and the vector that tracks the number of matches performed at

time t = 1, respectively.

Fix an arbitrary initial state of the queues q ∈ Zn≥0. Note that under any greedy policy, q must

satisfy that for any two queues i and j that are neighbors of each other, we cannot have qi, qj > 0.

In other words, for any m ∈ M with A(m) = {i, j}, at most one of these queues i or j can be

non-empty in q.

The first simple result is generic and applies to any stationary policy. Define the sets

U+(q) := {i ∈ A : qi > 0} and U0(q) := A\U .

These are, respectively, the set of non-empty and empty queues in q. We also define

M+(q) := {m ∈M : A(m) ∩ U+(q) 6= ∅}.

This is the set of matches that have a participating non-empty queue in q.

The following proposition is the first step to analyze the one step transition of the quadratic

Lyapunov function L(q). Define xDm(q) to be the expected number of times match m ∈ M is

performed in the first period under a greedy policy D. That is,

xDm(q) := EDq [∆D1
m].
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Proposition 5.1. Under any stationary greedy policy D, we have

EDq [L(Q1)− L(q)] ≤ 2q(λ−MxD(q)) + 1.

Moreover, xDm(q) must satisfy that

xDm(q) ∈ Z(q) :=

z(q) ∈ Rd≥0 : zm(q) = 0 for all m /∈M+(q) and
∑
m∈M:
Mim=1

zm(q) ≤ λi for all i ∈ U0(q)

 .

(11)

Proof of Proposition 5.1. Since Q1 = q + ∆A1 −M∆D1, we have

L(Q1)− L(q) =
∑
i∈Q0

(Q1
i + qi)(Q

1
i − qi)

= 2q(∆A1 −M∆D1) + (∆A1 −M∆D1)′(∆A1 −M∆D1).

Under any stationary greedy policy, we have |∆D1
m| ≤ 1 for all m ∈M, and since there is a single

agent arrival every period, we have (∆A1 −M∆D1)′(∆A1 −M∆D1) ≤ 1 with probability 1. This

proves the first assertion of the proposition after taking expectations.

For the second assertion, first observe that if m /∈ M+(q), since there is a single agent arrival

every period, m is unavailable to be performed after any agent arrival in the next period t = 1.

Thus, we have xm(q) = EDq [∆D1
m] = 0. Secondly, taking an empty queue i ∈ U0(q), we have that

∑
m∈M:
Mim=1

∆D1
m ≤ 1{∆A1

i = 1},

and, in turn, taking expectations yields

∑
m∈M:
Mim=1

EDq [∆D1
m] ≤ EDq [1{∆A1

i = 1}] = λi

as stated.

Recall that under LQ(M+), we break ties arbitrarily if any. Moreover, an arriving agent of
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type i ∈ U0(q) at time t = 1 matches to the longest-queue among those in the set

A+(i) := {j ∈ U+(q) : Mjm = Mim = 1 for some m ∈M+}.

The next proposition formalizes this fact within this subsection’s framework.

Proposition 5.2. For all i ∈ U0(q) with A+(i) 6= ∅, we have

x
LQ(M+)
(i,j) (q) = λi for j = arg max

k∈A+(i)

{qk}, (12)

and x
LQ(M+)
m (q) = 0 for all m ∈ M\{(i, j)}. If the arg max set in (12) contains multiple queues,

choose one arbitrarily.

Proof of Proposition 5.2. Consider i ∈ U0(q) such that A+(i) 6= ∅, i.e., the empty queue i has at

least one non-empty neighbor at t = 0. Let j = arg maxk∈A+(i){qk} be the longest-queue neighbor

of i. If there are multiple such queues, choose one arbitrarily. Then under LQ(M+), an arriving

agent of type i matches with queue j at time t = 1: ∆D1
m = 1{A1

i = 1} for match m satisfying

Mjm = Mim = 1. In turn, x
LQ(M+)
m (q) = ELQ(M+)

q [∆D1
m] = λi.

To show that all other matches have x
LQ(M+)
m (q) = 0, consider first m /∈M+(q). Because agent

arrivals happen one at a time, we have that if m /∈ M+(q), then m is unavailable to perform at

time t = 1. Thus, we have ELQ(M+)
q [∆D1

m] = 0 for such m’s.

Consider now (i, j′) ∈ M+(q) with i ∈ U0(q), A+(i) 6= ∅ and j′ ∈ U+(q), but such that j′ /∈

arg maxk∈A+(i){qk}. As before, we have
∑

m∈M:Mim=1 ∆D1
m ≤ 1{A1

i = 1} so that
∑

m∈M:
Mim=1

x
LQ(M+)
m ≤

λi. Since, we already showed that x
LQ(M+)
(i,j) (q) = λi for j = arg maxk∈A+(i){qk}, we must have that

x
LQ(M+)
(i,j′) (q) = 0 as stated.

Per Proposition 5.1, under LQ(M+) we then have that

ELQ(M+)
q [L(Q1)− L(q)] ≤ 2q(λ−MxLQ(M+)(q)) + 1,

where xLQ(M+)(q) is as in Proposition 5.2. Then to establish Lemma 5.4, it remains to show that

2q(λ−MxLQ(M+)(q)) ≤ −2
ε

n
‖q‖1.

This is proved in two steps. Proposition 5.3 below shows that LQ(M+), specifically its immediate
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(expected) allocation xLQ(M+)(q), minimizes the instantaneous drift, which is already characterized

in Proposition 5.1. Finally, Proposition 5.4 shows that the instantaneous drift of the quadratic

Lyapunov function L(q) has the desired form, which will directly imply Lemma 5.4. Recall the

definition of the set Z(q) in (11).

Proposition 5.3. Under LQ(M+), the expected one-period allocation xLQ(M+)(q) satisfies

xLQ(M+)
m (q) ∈ arg min

ξ∈Z(q)
{q(λ−Mξ)}.

Proof of Proposition 5.3. Consider the following linear optimization problem in the statement

of this lemma:

min q(λ−Mξ)

s.t. ξ ∈ Z(q),

where Z(q) is the linear constraint set in (11). We will rewrite the objective function, which will

make the claim straightforward. First, because qλ is a constant in this problem, the problem is

equivalent (in terms of optimizers) to the following problem

max qMξ

s.t. ξ ∈ Z(q). (13)

Under any stationary greedy policy, since each non-empty queue can only have empty neighboring

queues at any time, we can rewrite the objective function as

qMξ =
∑

i∈U+(q)

qi
∑

j∈U0(q)

Mijξ(i,j) =
∑

j∈U0(q)

∑
i∈U+(q)

qiξ(i,j),

where recall that we slightly abuse the notation by Mij = Mi,(i,j). Thus, solving the optimization

problem (13) is the same (in terms of optimizers) as solving a family of independent problems, one
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for each j ∈ U0(q):

max
∑

i∈U+(q)

qiξ(i,j)

s.t.
∑

i∈U+(q)

ξ(i,j) ≤ λj

ξ(i,j) ≥ 0 for all i ∈ U+(q).

This is a relaxation of the knapsack problem with a well-known simple optimal solution in the form

ξ∗(i,j) = λj for i ∈ arg max
k∈A+(j)

{qk},

and ξ∗(i,j) = 0 otherwise; let ξ∗ be the unified solution (across all individual problems for each

j ∈ U0(q)). Per Proposition 5.2, ξ∗ = xLQ(M+)(q) as stated.

Proposition 5.4. Assume that G satisfies GP. Then there exists ξ ∈ Z(q) such that

q(λ−Mξ) ≤ − ε
n
‖q‖1.

Proof of Proposition 5.4. Per Theorem 4.1, (Mz∗)i = λi for all i ∈ Q0. Define λ̃ as

λ̃i = λi for all i ∈ U0(q), and λ̃i = λi +
ε

n
for all i ∈ U+(q),

where ε is the general position gap. Then by Corollary 4.1, there exists z̃∗ such that (Mz̃∗)i = λ̃i for

all i ∈ Q0, where z∗ and z̃∗ have the same optimal basis. This is because the perturbation satisfies

the condition yl(λ̃ − λ) ≥ −ε for all l ∈ M+ ∪ Q+, as yl ∈ {−1,−1/2, 0, 1/2, 1} per Theorem 4.1.

Note that z̃∗ also satisfies
∑

m∈M:
Mim=1

z̃∗m ≤ λi = λ̃i for all i ∈ U0(q). Now we construct ξ based on

z̃∗. Let

ξm =

 z̃∗m, if m ∈M+(q),

0, otherwise.

Clearly we have ξ ∈ Z(q). Note that for all i ∈ U+(q), by definition we have m ∈ M+(q) for all
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m ∈M such that Mim = 1. This implies that for all i ∈ U+(q), we have

(Mξ)i = λ̃i = λi +
ε

n
.

Thus,

q(λ−Mξ) =
∑

i∈U+(q)

qi(λi − (Mξ)i) = − ε
n

∑
i∈U+(q)

qi = − ε
n

∑
i∈Q0

qi

as stated.

The proof of Lemma 5.4 is now immediate.

Proof of Lemma 5.4. Given Propositions 5.3 and 5.4, we have

q(λ−MxLQ(M+)(q)) ≤ − ε
n
‖q‖1,

which implies that under LQ(M+), per Proposition 5.1, we have

ELQ(M+)
q [L(Q1)− L(q)] ≤ −2

ε

n
‖q‖1 + 1

as stated.

5.4 Proof of Theorem 3.2

Throughout this subsection, we assume without loss of generality that G is a tree that satisfies GP

withM0 = ∅, and we fix an arbitrary topological order p(·). Let j+ be the unique queue such that

Q+ = {j+} per Lemma 3.1.

The Lyapunov function. The quadratic Lyapunov function, which is used in our analysis of

LQ(M+), does not work for SP (M+, p). To see this, consider the network in Figure 2. Note that

for any topological order p(·), we have p(1) < p(2), i.e., match 1 has a higher priority than match 2.

Take t where all queues are empty except queue 1. Then under SP (M+, p), L(Qt) =
∑

i∈Q0
(Qti)

2

does not necessarily decrease in expectation, since ‖Qt‖1 decreases by 1 with probability λ2, whereas

‖Qt‖1 increases by 1 with probability 1 − λ2 − λ6, and λ2 < (1/2)(1 − λ6) does not violate the

assumed GP.

Instead, we construct a Lyapunov function using the specific algebraic structure of the optimal

solution of (SPP) given in Theorem 4.1. Before introducing the Lyapunov function, we introduce

some useful definitions. Recall that d(i, j) is the length of the directed path from i ∈ A to j ∈ A
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in
−→
G . We define the set B(i) := {j ∈ A : d(i, j) = 1}. An intuitive way to interpret the set B(i)

is as follows. Consider “hanging”
−→
G by the root j+. Then B(i) contains all agent types that are

directly below i ∈ A in
−→
G . For example in Figure 2, we have B(3) = {2, 4} ⊆ A.

Recalling that Qt = At −MDt for all t ≥ 0 per (1), consider the stochastic variant of (SPP) at

a given time t:

max r · z

s.t. Mz +Qt = At

z ∈ Rd≥0, Q
t ∈ Rn≥0.

It is a simple observation that by the construction of the surplus vectors, we have ymMz = zm

for all m ∈ M+. Multiplying both sides of the linear constraint set of this stochastic variant with

ym, m ∈M+, yields zm+ymQt = ymAt for all m ∈M+. Per Theorem 4.1, we should have zm ≈ 0

for all m ∈M0 and zm ≈ ymAt for all m ∈M+ to achieve optimality for (SPP). This suggest that

we should have ymQt ≈ 0 for all m ∈M+.

It is then natural to construct a function f(Qt) such that when f(Qt) = 0, then we have

ymQt = 0 for all m ∈M+, or equivalently, yiQt = 0 for all i ∈ Q0. To that end, define

Zti := yiQt for all i ∈ Q0.

The set U0 = {i ∈ Q0 :
∑

m∈MMim = 1}—the queues in Q0 that are leaves of G—must be a

non-empty set. Otherwise G must contain a cycle and here, recall, we are assuming that G is a tree.

Trivially, B(i) = ∅ for all i ∈ U0.

We take, for our Lyapunov function, the mapping

f(Qt) :=
∑

i∈A\U0

αi

( ∑
j∈B(i)

Zti

)2

, (14)

where αi > 0 for all i ∈ A\U0. For example, the corresponding Lyapunov function to the matching

network in Figure 2 is f(Qt) = α2(Qt1)2 +α4(Qt5)2 +α3(Qt2−Qt1 +Qt4−Qt5)2 +α6(Qt7 + (Qt3−Qt2−

Qt4 +Qt1 +Qt5) +Qt8)2.

The following is the main ingredient in the proof of Theorem 3.2.

Lemma 5.5. Assume that G is a tree that satisfies GP with M0 = ∅. Then under SP (M+, p),

the Markov chain (Qti : i ∈ Q0, t ≥ 0) is ergodic. Moreover, there exist strictly positive coefficients
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αi, i ∈ Q0, and constants θ, γ > 0 such that f(Qt) in (14) decreases in expectation:

E[f(Qt+1)− f(Qt) | Qt] ≤ −γ
√
f(Qt) + θ for all t ≥ 0. (15)

The proof of Lemma 5.5 is given in the appendix. Next we apply it to complete the proof of

Theorem 3.2.

Proof of Theorem 3.2. The drift property (15) in Lemma 5.5 implies that the Markov chain

(Qti : i ∈ Q0, t ≥ 0) is positive recurrent; e.g., see (Robert, 2003, Corollary 8.7). Given Lemma

5.5, moment bounds in the steady-state follow trivially from Theorem 5.2. In particular, under the

Markov chain’s unique stationary distribution, which we denote by π, we have

Eπ[|
∑
j∈B(i)

Z0
i |] ≤

√
θ

αiγ
for all i ∈ A\U0,

where Q0 ∼ π. This implies that for all i ∈ A\U0, we have E[|
∑

j∈B(i) Z
t
i |] = O(1) for all t > 0.

Note that by the construction of the surplus vectors, we have

∑
j∈B(i)

Zti =
∑
j∈B(i)

yiQt =
∑
j∈B(i)

Qtj −
∑
j∈B(i)

∑
k∈B(j)

yjQt =
∑
j∈B(i)

Qtj −
∑
j∈B(i)

∑
k∈B(j)

Ztk,

for all i ∈ A\U0 and for all t > 0. Therefore, we conclude that under SP (M+, p), we have

∑
i∈Q0

E[Qti] = O(1) for all t > 0.

Then per Lemma 5.1, SP (M+, p) is hindsight optimal as stated.

The proof of Lemma 5.5 reveals that αi’s depend on γ’s, and θ depends on αi’s in a complicated

way (in contrast to (9)), which is the reason why we cannot establish the optimal scaling ε−1 for

regret under SP (M+, p).

6 Numerical examples

In this section, we present some simulation results to provide further insights about our greedy

policies. All simulations are based on 10000 replications.
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λ1 = λ λ2 = 2λ λ3 = 4λ λ4 = 6λ λ5 = 8λ λ6 = 7λ
r1 = 10 r2 = 5 r3 = 3 r4 = 2 r5 = 1

Figure 5: A matching network that satisfies GP with M0 = ∅ and Q+ = {6} (yellow vertex), where the
scalar λ is chosen so that

∑
i∈A λi = 1 (λ ≈ 0.03). The optimal solution of (SPP) has z∗ = (λ, λ, 3λ, 3λ, 5λ) and

s∗ = (0, 0, 0, 0, 0, 2λ), and the general position gap is ε = λ. In general, for any λ1 ∈ [λ, 2λ), we have ε = z∗2 =
λ2 − λ1 = 2λ− λ1.

Example 6.1 (regret scaling of SP (M+, p)). Consider the network in Figure 5. The priority order

under SP (M+, p) is m1 � m2 � m3 � m4 � m5, where m � m′ means that p(m) < p(m′) (m has

a higher priority than m′). We consider 10 separate scenarios, where λ1 takes values sequentially in

the set {λ, 1.1λ, . . . , 1.9λ}. For any given scenario, the optimal basis remains unchanged, and the

general position gap is ε = λ2 − λ1 = 2λ− λ1. Figure 6 suggests that the scaling for the achieved

constant regret under SP (M+, p) in Theorem 3.2 is ε−1, as in Theorem 3.1.

Figure 6: We consider the network in Figure 5. The x-axis corresponds to the inverse of the general position gap for
each scenario, ε−1 = 1/(2λ− λ1), where λ1 takes values sequentially in the set {λ, 1.1λ, . . . , 1.9λ}, and ε−1 increases
as λ1 increases. For the first scenario (λ1 = λ) we have ε−1 ≈ 28, and for the last scenario (λ1 = 1.9λ) we have
ε−1 ≈ 289. The y-axis corresponds to the regret under SP (M+, p) at time t = 5 · 104, where the time horizon is
T = 105.

Remark 6.1 (dependence of p(·) on λ). The construction of the static priority order p(·) reflects

the arrival probabilities only through their implication on the setsM+ and Q+. Given two different

arrival-probability vectors, as long as they result in the same optimal basis for (SPP), the set of all

possible topological orders p(·)’s are the same.

Given λ, consider the optimal basis of (SPP), and the induced sets M+ and Q+ under GP.
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Then per Theorem 4.1, we know that any other arrival-probability vector, say λ̃, such that λ̃ is in

the cone

Y :=
{
λ′ ∈ Rn+ : ymλ′ > 0 for all m ∈M+ and yjλ′ > 0 for all j ∈ Q+

}
,

results in the same set of all topological orders.

Example 6.2 (the robustness of SP (M+, p)). Consider the network in Figure 5. Our priority

order is m1 � m2 � m3 � m4 � m5, where m � m′ means that m has a higher priority than

m′, i.e., p(m) < p(m′). Consider an alternative static priority policy with the priority order

m2 � m1 � m3 � m4 � m5, i.e., the priority assignment between m1 and m2 is altered. Note that

this alternative priority order is not a topological order. Figure 7 shows that both policies achieve

constant regret, i.e., one that does not grow with time.

Next let us change a bit the arrival probabilities, and consider λ1 = 1.9λ (instead of λ1 = λ)

with all else remaining the same. This perturbation on λ does not change the optimal basis—the

setsM+ and Q+—and neither does it change our prescribed priority order. As Figure 8 illustrates,

while our SP (M+, p) still achieves constant regret, the alternative policy has a regret that grows

with time. As argued in Remark 6.1, if the perturbation on λ does not affect the optimal basis,

SP (M+, p) remains hindsight optimal, whereas a deviation in the priority order may result in

suboptimality.
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Figure 7: We consider the network in Figure 5, where ε ≈ 0.03. (LEFT) SP (M+, p) is hindsight optimal. (RIGHT)
The alternative greedy static priority policy achieves a higher regret than SP (M+, p), but it is still hindsight optimal.
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Figure 8: We consider the network in Figure 5, where λ1 = 1.9λ instead, and ε ≈ 0.003 now. (LEFT) SP (M+, p)
is still hindsight optimal given the perturbation on the arrival-probability vector. (RIGHT) Under the proposed
perturbation, the alternative policy is no longer hindsight optimal, and its regret grows with t.

The next example illustrates that there exist matching networks, where LQ(M+) generates a

higher total value than SP (M+, p), and vice versa.

Example 6.3 (Comparison of LQ(M+) and SP (M+, p)). Consider the network in Figure 5 again.

Per Theorems 3.1 and 3.2, both LQ(M+) and SP (M+, p) are hindsight optimal. Intuitively, the

priority order under SP (M+, p) coincides with the order of matches with respect to their values,

and one can expect that SP (M+, p) may result in a smaller regret than LQ(M+), and Figure 9

supports this intuition.
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Figure 9: We consider the network in Figure 5, where ε ≈ 0.03. (LEFT) SP (M+, p) is hindsight optimal. (RIGHT)
The difference in the generated total value (performance gap) between SP (M+, p) and LQ(M+), where the former
“dominates” the latter.
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λ1 = λ λ2 = 2λ λ3 = 3λ λ4 = 4λ λ5 = 2.1λ
r1 = 1 r2 = 2 r3 = 3 r4 = 2

Figure 10: A matching network that satisfies GP with M0 = ∅ and Q+ = {5} (yellow vertex), where the
scalar λ is chosen so that

∑
i∈A λi = 1 (λ ≈ 0.08). The optimal solution of (SPP) has z∗ = (λ, λ, 2λ, 2λ) and

s∗ = (0, 0, 0, 0, 0.1λ), and the general position gap is ε = s∗5 = 0.1λ.

Now consider the network in Figure 10. Figure 11 illustrates that LQ(M+) results in a smaller

regret than SP (M+, p). Hence, both simulations suggest that there exist matching networks and

network primitives so that LQ(M+) achieves smaller regret than SP (M+, p), and vice versa.
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Figure 11: We consider the network in Figure 10, where ε ≈ 0.008. (LEFT) LQ(M+) is hindsight optimal.
(RIGHT) The difference in the generated total value (performance gap) between LQ(M+) and SP (M+, p), where
the former “dominates” the latter.

Remark 6.2 (scaling of the lower bound on regret with the number of agent types). Our current

work, together with Kerimov et al. (2021) that precedes it, concern scaling of regret as a function

of ε. The general lower bound in Kerimov et al. (2021) stipulates that no policy can do better

than Ω(ε−1); this lower bound is not explicit as to dependence on the network structure or, more

specifically, the number of agent types. Our Theorem 3.1 shows that LQ(M+)’s regret is at

most rmaxn/ε, a bound that grows with the number of agent types n. Whether or not—or more

specifically under which conditions—the best achievable regret grows with n remains an open

question.

7 Concluding remarks

We found that in the general class of two-way matching networks that satisfy a general position

condition, greedy policies (whose design is) based on static optimal matching rates achieve constant
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regret at all times; they are hindsight optimal. In these networks, in particular, there is no positive

externality from waiting to form future matches. Moreover, greediness offers local and simple

matching rules that, other than identifying static optimal matching rates a priori, does not require

any additional optimization.

The greedy policies we prescribe, longest-queue and static priority, differ in whether they depend

on the state of the network or not. Therefore, these policies may be appealing in different contexts.

These results complement those in our previous paper Kerimov et al. (2021), where we found

that in multi-way matching networks, greedy policies are not hindsight optimal, but carefully

designed periodic clearing matching policies do achieve hindsight optimality.

General position is a weak but necessary condition for hindsight optimality (Kerimov et al.,

2021). Moreover, the optimal scaling for constant regret is given by ε−1, where ε is a simple quantity

that arises from the static-planning problem (a deterministic counterpart) that also provides the

optimal matching rates. This quantity is intimately linked with stability; if queues of types that are

not under-demanded (queues in Q0) are bounded by ε−1 (in expectation) at all times, the policy

is hindsight optimal and the scaling for constant regret is the same as the moment bound on the

queue-lengths.

We hope that what we learned in this paper can be leveraged to expand the results to include

several practical, yet challenging considerations.

The simplest is the inclusion of holding costs. In matching networks, like the ones we con-

sider in this paper, there is an intimate connection between value maximization and holding-cost

minimization; we refer the reader to Kerimov et al. (2021) for a detailed discussion of this correspon-

dence. Less immediate are expansions of the models to capture agent departures and decentralized

matching networks. When agents abandon the market without matching after some agent-specific

(possibly random) time, it is no longer clear—even in networks with two-way matches—that there

exists a greedy hindsight optimal policy. In such networks, it might be important to build an

inventory in anticipation of “short-fuse” agents that participate in high value matches and are

highly impatient. In decentralized dynamic matching markets, agents wish to maximize their own

payoffs (Leshno, 2011; Baccara et al., 2020), and agents might act in a way that compromise global

optimality. Combining the queueing modeling in this paper with mechanism design tools might

help to shed further light on how to regulate such settings.
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A Proofs of auxiliary lemmas

Proof of Lemma 3.1. Let (z∗, s∗) be the unique non-degenerate optimal solution of (SPP) under

GP. Note that the projection of (z∗, s∗) remains as a non-degenerate optimal basic feasible solution

when restricted to each component Ck, k ∈ [K]. This immediately follows from the construction

of the (SPP)-residual graph G′, as any component Ck is “disconnected” from G by removing all

redundant matches in M0 (m ∈ M with z∗m = 0). Assume that Ck contains nk ≥ 1 vertices

(queues) and mk ≥ 0 edges (matches) for all k ∈ [K].

(i) Since Ck does not contain any redundant matches, non-degeneracy implies that nk ≥ mk,

since there are nk many basic variables in the projection of (z∗, s∗), and all mk variables

corresponding to active matches in Ck are basic. If Ck contains at least two cycles, then we

must have mk > nk, which is a contradiction. Thus, Ck contains at most one cycle.

(ii) Since Ck is a component, it is connected, and if it does not contain a cycle, then it must be a

tree. Thus, we have nk = mk + 1. Then non-degeneracy implies that |A(Ck) ∩Q+| = 1.

(iii) Per (i), Ck contains exactly one cycle. Then we must have nk = mk. Assume to the contrary

that this cycle is of even length. Consider the projection of (z∗, s∗) when restricted to Ck, which

remains as a non-degenerate optimal basic feasible solution as argued above. Since nk = mk,

all slack variables in the projection are non-basic. Consider all the matches that are included in

this even cycle and the corresponding column vectors of these matches in the matching matrix

M . Since the cycle is of even length, these column vectors are not linearly independent, which

is a contradiction to the fact that the optimal solution is a basic feasible solution. Thus, Ck
can only contain an odd cycle, where we note that the corresponding columns to the matches

included in the cycle are linearly independent. Finally, non-degeneracy and nk = mk implies

that |A(Ck) ∩Q+| = 0.

Proof of Lemma 5.1. The proof follows immediately as in (Kerimov et al., 2021, Lemma 4.1) with

the following modifications. Since we must have λ̃i > 0 for all i ∈ Q0, fix t such that λmin > Bt−1.

Per Theorem 4.1, we have ω = 1. Therefore, we conclude that R∗,t − RD,t ≤ trmaxω‖λ − λ̃‖ ≤

trmaxBt
−1 = rmaxB.
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B Proof of Lemma 5.5

Before proving Lemma 5.5, we begin with some preliminaries. We define a family of functions

gi, i ∈ A, as follows. Let gti := 0 for all i ∈ U0 and for all t ≥ 0, and sequentially define

gti :=

( ∑
j∈B(i)

Ztj

)2

+ αi
∑
j∈B(i)

gtj for all i ∈ A\U0 and for all t ≥ 0,

where the coefficients αi > 0, i ∈ A\U0, will be determined later in the section. To prove Lemma

5.5, we prove the following slightly more general result.

Lemma B.1. Assume that G is a tree that satisfies GP with M0 = ∅. Then under SP (M+, p),

the Markov chain (Qti : i ∈ Q0, t ≥ 0) is ergodic. Moreover, there exist strictly positive coefficients

αi, i ∈ Q0, and constants γi, θi > 0, i ∈ Q0, such that

E[gt+1
i − gti | Qt] ≤ −γi

√
gti + θi for all t ≥ 0. (16)

Observe that Lemma 5.5 follows immediately from Lemma B.1, noting that f(Qt) is gtj+ itself with

coefficients redefined, where recall that j+ is the root of
−→
G .

Recall that d(i, j) is the length of the directed path from i ∈ A to j ∈ A in
−→
G , and that

B(i) = {j ∈ A : d(i, j) = 1}, which contains the agent types that are directly below i ∈ A in
−→
G .

Define B̂(i) := {m ∈ M : A(m) = {i, k} and k ∈ B(i)}, i.e., the set that contains all matches that

are directly below i ∈ A in
−→
G . For example in Figure 2, we have B̂(6) = {3, 6, 7} ⊆ M.

For any i ∈ Q0, let i↑ be the unique queue in
−→
G such that d(i↑, i) = 1. In words, i↑ is the queue

that is directly above i ∈ Q0 in
−→
G , i.e., the direction on m such that A(m) = {i, i↑} is incoming to

i. Note that such a queue does not exist for the root j+ ∈ Q+.

The following remark is crucial in the proof of Lemma 5.5, and it follows directly from the

definition of a topological order p(·).

Remark B.1. Fix some i ∈ Q0, and let m↑ ∈ M be the match that i and i↑ participates, i.e.,

A(m↑) = {i, i↑}. Given any topological order p(·), we have p(m) < p(m↑) for all m ∈ B̂(i). In

words, any match that is directly below i has a higher priority than the match that is directly above

i.

Finally, define di := maxj∈U0∩A(Ti) d(i, j) for all i ∈ A. One can intuitively view di as the

parameter indicating the position of queue i relative to the root j+ of
−→
G ; the larger the di, the
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closer queue i is to the root j+. For example in Figure 2, we have U0 = {1, 5, 7, 8} ⊆ A, d2 = 1,

d3 = 2 and d6 = 3. Now we prove Lemma B.1.

Proof of Lemma B.1. We will first establish (16), and we then prove the ergodicity of the Markov

chain (Qti : i ∈ Q0, t ≥ 0). We will also use the following three aids in the proof. Propositions

B.1 and B.2 are proven in the end of this section, and Proposition B.3 is a known standard result

that appears, for example, in (Robert, 2003, Corollary 8.7). Throughout the proof, for ease of

exposition, for all i ∈ A\U0 and for all t ≥ 0, we let

ZtB(i) :=
∑
j∈B(i)

Ztj , g
t
B(i) :=

∑
j∈B(i)

gtj , and QtB(i) :=
∑
j∈B(i)

Qtj .

Proposition B.1 (bounded jumps). Under the assumptions of Theorem B.1, for all i ∈ A\U0, for

all t ≥ 0, and for any constant Bi > 0, we have

E[gt+1
i − gti | Qt, gti ≤ Bi] ≤ θi

for some constant θi > 0, which depends only on n and Bi.

Proposition B.2. Under the assumptions of Theorem B.1, for all i ∈ A\U0 and for all t ≥ 0, we

have

E[(Zt+1
B(i))

2 − (ZtB(i))
2 | Qt, QtB(i) > 0] = −ηiZtB(i) + δi,

where ηi := 2yiλ and δi :=
∑

j∈A(Ti) λj.

Proposition B.3 (Robert (2003), Corollary 8.7). Let (Mt : t ≥ 0) be a discrete-time, homogeneous,

irreducible and aperiodic Markov chain with values in a countable state space X . If there exist a

function f : X → R+ and constants K, η > 0 such that

(i) Ex[f(M1)− f(x)] ≤ −η when f(x) > K,

(ii) Ex[f(M1)] <∞ when f(x) ≤ K, and

(iii) the set {x ∈ X : f(x) ≤ K} is finite,

then the Markov chain (Mt : t ≥ 0) is ergodic.

We use strong induction on di, i ∈ A\U0, where recall that di = maxj∈U0∩A(Ti) d(i, j). The fol-

lowing simple observation is used repeatedly in the analysis, which follows from the definition
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gti = (ZtB(i))
2 + αig

t
B(i): √

gti ≥ |Z
t
B(i)|. (17)

Basis. Consider i ∈ A\U0 such that di = 1. This implies B(i) ⊆ U0 so that yjQt = Qtj for all

j ∈ B(i). By definition, since gtj = 0 for all j ∈ B(i) ⊆ U0, we have

gti = (ZtB(i))
2 + αig

t
B(i) =

( ∑
j∈B(i)

yjQt
)2

= (QtB(i))
2.

Fix Bi > 0 (its specific value will be determined later), and consider the following two cases:

• 1: (gti > Bi). Note that gti = (QtB(i))
2 and QtB(i) >

√
Bi > 0. Per Lemma B.2, we have

E[gt+1
i − gti | Qt, gti > Bi] = E[(Zt+1

B(i))
2 − (ZtB(i))

2 | Qt, gti > Bi]

= −ηiZtB(i) + δi

= −ηi
√
gti + δi.

Choose any γi ∈ (0, ηi) and update Bi to a sufficiently large constant such that
√
gti >

√
Bi ≥

δi
ηi − γi

. This implies

E[gt+1
i − gti | Qt, gti > Bi] = −ηi

√
gti + δi ≤ −γi

√
gti .

• 2: (gti ≤ Bi, where Bi is chosen as in case 1). Per Lemma B.1, we have

E[gt+1
i − gti | Qt, gti ≤ Bi] ≤ θi,

for some constant θi > 0, which depends only on n and Bi.

Combining both cases above, we have

E[gt+1
i − gti | Qt] ≤ −γi

√
gti + θi,

for all t ≥ 0, where θi is a redefined constant. This concludes the basis of the induction.

Inductive step. Assume that the induction hypothesis holds for all i ∈ A\U0 such that di ≤ d,

d ≥ 1. Consider i ∈ A\U0 such that di = d+ 1. By the induction hypothesis, for all j ∈ B(i), there
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exist constants αj , γj , Bj , θj > 0 such that

E[gt+1
j − gtj | Qt] ≤ −γj

√
gtj + θj ,

for all t ≥ 0, since dj ≤ d.

For now, fix some αi > 0 and Bi > 0 at the beginning of each of the following cases. These

constants are place holders, and their values will be determined at the end of each case analysis.

It might be helpful here to point out that αi will be a function of γi, Bi will be a function of

αi, and θi will be a function of Bi. We divide the analysis into three cases: (1) gti > Bi and

|ZtB(i)| ≤
∑

j∈B(i)

√
gtj , (2) gti > Bi and |ZtB(i)| >

∑
j∈B(i)

√
gtj , and (3) gti ≤ Bi.

• 1: (gti > Bi and |ZtB(i)| ≤
∑

j∈B(i)

√
gtj). Denote this case by E1. Since

gti = (ZtB(i))
2 + αig

t
B(i) > Bi,

and |ZtB(i)| ≤
∑

j∈B(i)

√
gtj , we can choose Bi sufficiently large so that if gti > Bi, then also

gtj > Bj for at least one j ∈ B(i). Define the sets

J> :=
{
j ∈ B(i) : gtj > Bj

}
and J≤ := B(i)\J> =

{
j ∈ B(i) : gtj ≤ Bj

}
.

Since |B(i)| ≤ |A| = n and |Qt+1
j −Qtj | ≤ 1 for all j ∈ B(i), we have |Zt+1

B(i)−Z
t
B(i)| ≤ n for all

t ≥ 0. By the definition of J≤,
∑

j∈J≤

√
gtj ≤

∑
j∈B(i)

√
Bj =: U1 and

|ZtB(i)| ≤
∑
j∈B(i)

√
gtj ≤ U1 +

∑
j∈J>

√
gtj . (18)

Combining these altogether, we have

E[(Zt+1
B(i))

2 − (ZtB(i))
2 | Qt, E1] = E[(Zt+1

B(i) − Z
t
B(i))(Z

t+1
B(i) + ZtB(i)) | Q

t, E1]

≤ n
(
n+ 2U1 + 2

∑
j∈J>

√
gtj

)

≤ U2

(
U1 +

∑
j∈J>

√
gtj

)
(19)

for some constant U2 > 0, which depends only on n and U1. For all j ∈ J>, we have by the
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induction hypothesis that

E[gt+1
j − gtj | Qt, E1] ≤ −γj

√
gtj , (20)

and per Lemma B.1, for all j ∈ J≤ we have that

E[gt+1
j − gtj | Qt, E1] ≤ U3 (21)

for some constant U3 > 0, which depends only on n and Bj . We want to show that there

exist constants αi, γi, Bi > 0 such that

E[gt+1
i − gti | Qt, E1] ≤ U2

(
U1 +

∑
j∈J>

√
gtj

)
− αi

( ∑
j∈J>

γj

√
gtj

)
+ |J≤|αiU3 (22)

≤ U2

(
U1 +

∑
j∈J>

√
gtj

)
− αi

( ∑
j∈J>

γj

√
gtj

)
+ nαiU3 (23)

≤ −γi
√
gti (24)

holds, where (22) follows from (19), (20) and (21), and (23) follows from the fact that |J≤| ≤

|A| = n. First, we have that

√
gti ≤ |Z

t
B(i)|+

√
αi
√
gtB(i) ≤

( ∑
j∈B(i)

√
gtj

)
+
√
αi

( ∑
j∈B(i)

√
gtj

)

≤
(

1 +
√
αi

)(
U1 +

∑
j∈J>

√
gtj

)
,

where the first inequality follows from the definition gti = (ZtB(i))
2 + αig

t
B(i), the second

inequality follows from the requirement of this case (case 1), and the last inequality follows

from (18). Thus, for any γi > 0, we have

− γi
(

1 +
√
αi

)(
U1 +

∑
j∈J>

√
gtj

)
≤ −γi

√
gti . (25)

Fixing an arbitrary γCase 1
i > 0, take αCase 1

i > 0 sufficiently large such that αCase 1
i (minj∈J> γj) >

αCase 1
i (minj∈B(i) γj) >

(
U2 + γCase 1

i

(
1 +

√
αCase 1
i

))
. Setting Bi to a sufficiently large con-
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stant BCase 1
i (recalling that gtj > Bj for all j ∈ J>), we have the inequality

αCase 1
i

( ∑
j∈J>

γj

√
gtj

)
−
(
U2 + γCase 1

i

(
1 +

√
αCase 1
i

))(
U1 +

∑
j∈J>

√
gtj

)
− nαCase 1

i U3 ≥ 0, (26)

since
∑

j∈J>

√
gtj can be made sufficiently large.

Thus, if we update the previously fixed constants αi and Bi to αCase 1
i and BCase 1

i , respectively,

then (26) implies that the left hand side of (25) is greater than or equal to the right hand

side of (22). Therefore, (24) holds for γCase 1
i , αCase 1

i and BCase 1
i .

• 2: (gti > Bi and |ZtB(i)| >
∑

j∈B(i)

√
gtj). Denote this case by E2. We claim that in this case

we have

(i) QtB(i) > 0, and (ii) ZtB(i) > 0, (27)

where both claims are proven in the end of this case. We have QtB(i) > 0 by (27)(i), and

clearly δi =
∑

j∈A(Ti) λj ≤
∑

j∈A λj = 1. Thus, Lemma B.2 yields

E[(Zt+1
B(i))

2 − (ZtB(i))
2 | Qt, E2] ≤ −ηiZtB(i) + 1, (28)

where recall that ηi = 2yiλ. By the induction hypothesis, for all j ∈ J>, we have

E[gt+1
j − gtj | Qt, E2] ≤ −γj

√
gtj , (29)

and per (21), for all j ∈ J≤ we have that

E[gt+1
j − gtj | Qt, E2] ≤ U3. (30)

Similar to the previous case, we want to show that there exists constants αi, γi, Bi > 0 such

45



that

E[gt+1
i − gti | Qt, E2] ≤ −ηiZtB(i) + 1− αi

( ∑
j∈J>

γj

√
gtj

)
+ |J≤|αiU3 (31)

≤ −ηiZtB(i) + 1− αi
( ∑
j∈J>

γj

√
gtj

)
+ nαiU3 (32)

≤ −γi
√
gti (33)

holds, where (31) follows from (28), (29) and (30), and (32) follows from the fact that |J≤| ≤

|A| = n.

Recall from the previous case that
∑

j∈J≤

√
gtj ≤ U1. By (27)(ii), we have ZtB(i) > 0 and

√
gti ≤ |Z

t
B(i)|+

√
αi

√ ∑
j∈B(i)

gtj = ZtB(i) +
√
αi

√ ∑
j∈B(i)

gtj

≤ ZtB(i) +
√
αi

( ∑
j∈B(i)

√
gtj

)
≤ ZtB(i) +

√
αi

(
U1 +

∑
j∈J>

√
gtj

)
.

Thus, for any γi > 0 we have that

− γi
(
ZtB(i) +

√
αi

(
U1 +

∑
j∈J>

√
gtj

))
≤ −γi

√
gti . (34)

Pick an arbitrary γCase 2
i ∈ (0, ηi) and αCase 2

i > 0 such that αCase 2
i (minj∈J> γj) > αCase 2

i (minj∈B(i) γj) >

γCase 2
i

√
αCase 2
i . Note that ZtB(i) can be made arbitrarily large by updating Bi to a suffi-

ciently large constant BCase 2
i , since gti = (ZtB(i))

2 + αi(g
t
B(i)) > Bi and |ZtB(i)| = ZtB(i) >∑

j∈B(i)

√
gtj ≥

√
gtB(i) by the assumption of this case (case 2). Hence, the following inequal-

ity holds:

(ηi − γCase 2
i )ZtB(i) + αCase 2

i

( ∑
j∈J>

γj

√
gtj

)

− γCase 2
i

√
αCase 2
i

(
U1 +

∑
j∈J>

√
gtj

)
− 1− nαCase 2

i U3 ≥ 0. (35)

Thus, if we update the previously fixed constants αi and Bi to αCase 2
i and BCase 2

i , respectively,

then (35) implies that the left hand side of (34) is greater than or equal to the right hand

side of (31). Therefore, (33) holds for γCase 2
i , αCase 2

i and BCase 2
i .
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We now prove the two claims in (27).

– Claim (i). Note that by the construction of the surplus vectors yi, i ∈ A, we have

ZtB(i) =
∑
j∈B(i)

Ztj =
∑
j∈B(i)

yjQt =
∑
j∈B(i)

Qtj −
∑
j∈B(i)

∑
k∈B(j)

ykQt = QtB(i) −
∑
j∈B(i)

ZtB(j),

which implies

|ZtB(i)| ≤ Q
t
B(i) +

∑
j∈B(i)

|ZtB(j)|.

By our simple observation (17), we have
√
gtj ≥ |ZtB(j)| for all j ∈ B(i), which yields∑

j∈B(i)

√
gtj ≥

∑
j∈B(i) |ZtB(j)|. Since |ZtB(i)| >

∑
j∈B(i)

√
gtj by the assumption of this

case (case 2), we have

0 ≤
∑
j∈B(i)

√
gtj < |Z

t
B(i)| ≤ Q

t
B(i) +

∑
j∈B(i)

|ZtB(j)| ≤ Q
t
B(i) +

∑
j∈B(i)

√
gtj ,

which implies QtB(i) > 0 as stated.

– Claim (ii). Note that we cannot have ZtB(i) = 0 by the assumption of this case (case

2). Assume to the contrary that ZtB(i) < 0. Then the assumption of this case yields

ZtB(i) < −
∑
j∈B(i)

√
gti . (36)

Since QtB(i) > 0 per (27)(i), and
∑

j∈B(i)

√
gtj ≥

∑
j∈B(i) |ZB(j)(t)| per (17), we have

ZtB(i) = QtB(i) −
∑
j∈B(i)

ZtB(j) ≥ Q
t
B(i) −

∑
j∈B(i)

√
gtj ≥ −

∑
j∈B(i)

√
gtj ,

which contradicts (36). Therefore, we have ZtB(i) > 0 as stated.

• 3: (gti ≤ Bi). Denote this event by E3. Per Lemma B.1, we have

E[gt+1
i − gti | Qt, E3] ≤ θi,

for some constant θi > 0, which depends only on n and Bi.

Combining cases 1-3. Let γi = min
{
γCase 1
i , γCase 2

i

}
, αi = max

{
αCase 1
i , αCase 2

i

}
and Bi =
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max
{
BCase 1
i , BCase 2

i

}
. We can then write

E[gt+1
i − gti | Qt] ≤ −γi

√
gti + θi,

for all t ≥ 0, where θi is a redefined constant. Hence, the induction hypothesis also holds for

i ∈ A\U0 with di = d+ 1. This concludes the proof for the drift condition (16).

For the ergodicity result, note that the Markov chain (Qti : i ∈ Q0, t ≥ 0) is clearly homogeneous,

irreducible and aperiodic. Since we already established the drift condition (16), the first two

conditions of Proposition B.3 hold. Since |A| = n < ∞, the third condition of Lemma B.3 is also

satisfied. Thus, the Markov chain is ergodic.

We conclude this section with the proofs of Propositions B.1 and B.2.

Proof of Proposition B.1. We use strong induction on di, i ∈ A\U0, where recall that di =

maxj∈U0∩A(Ti) d(i, j).

Basis. Consider i ∈ A\U0 such that di = 1. This implies B(i) ⊆ U0 so that yjQt = Qtj for all

j ∈ B(i). By definition, since gtj = 0 for all j ∈ B(i) ⊆ U0, we have

gti = (ZtB(i))
2 + αig

t
B(i) =

( ∑
j∈B(i)

yjQt
)2

= (QtB(i))
2.

Since |B(i)| ≤ |A| = n and |Qt+1
j −Qtj | ≤ 1 for all j ∈ B(i), we have |Qt+1

B(i)−Q
t
B(i)| ≤ n for all t ≥ 0.

By the assumption of this proposition, we have
√
gti = QtB(i) ≤

√
Bi. Combining these altogether,

we have

E[gt+1
i − gti | Qt, gti ≤ Bi] = E[(Qt+1

B(i))
2 − (QtB(i))

2 | Qt, gti ≤ Bi]

= E[(Qt+1
B(i) −Q

t
B(i))(Q

t+1
B(i) +QtB(i)) | Q

t, gti ≤ Bi]

≤ n
(√

Bi +
√
Bi + n

)
=: θi,

which concludes the basis of the induction.

Inductive step. Assume that the induction hypothesis holds for all i ∈ A\U0 such that dj ≤ d,

d ≥ 1. Consider i ∈ A\U0 such that di = d + 1. Recall that gti = (ZtB(i))
2 + αig

t
B(i) ≤ Bi. By the

induction hypothesis, since dj ≤ d for all j ∈ B(i), we have

αiE[gt+1
B(i) − g

t
B(i) | Q

t, gti ≤ Bi] ≤ U
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for some constant U > 0, which depends only on αi and Bi. Since |Zt+1
B(i)−Z

t
B(i)| ≤ n (see case 1 in

the proof of Lemma B.1) and |ZtB(i)| ≤
√
Bi, we have

E[(Zt+1
B(i))

2 − (ZtB(i))
2 | Qt, gti ≤ Bi] = E[(Zt+1

B(i) − Z
t
B(i))(Z

t+1
B(i) + ZtB(i)) | Q

t, gti ≤ Bi]

≤ n
(√

Bi +
√
Bi + n

)
,

which implies

E[gt+1
i − gti | Qt, gti ≤ Bi] ≤ n

(√
Bi +

√
Bi + n

)
+ U =: θi.

Hence, the induction hypothesis holds for i ∈ A\U0 with di = d+ 1.

Proof of Proposition B.2. For each match m ∈ M with A(m) = {i, j}, let Dt
i,j be the number

of times match m is performed under SP (M+, p) by time t. We first claim that for all i ∈ A and

t ≥ 0, we have

Zti = yiAt −Dt
i,i↑ . (37)

The proof of this claim is given in the end of the current proof. (37) implies that ZtB(i) =∑
j∈B(i) Z

t
j =

∑
j∈B(i)(y

jAt −Dt
j,i). Thus, for all t ≥ 0, we have

Zt+1
B(i) − Z

t
B(i) =

∑
j∈B(i)

(yj∆At −∆Dt
j,i), (38)

where ∆At = At+1−At and ∆Dt
j,i = Dt+1

j,i −Dt
j,i. Since QtB(i) > 0 by the assumption of this lemma,

we must have Qti = 0 (otherwise a match would be executed between i and some j ∈ B(i) due to

the greedy nature of the policy). Per (38), Zt+1
B(i) − Z

t
B(i) 6= 0 if and only the arriving agent at time

t+ 1 is of type k, k ∈ A(Ti). Consider such an arrival:

• If d(i, k) is odd, then by the construction of the surplus vectors, ∆Atk has a positive sign

in the summation (38). Since there is a single agent arrival per period, ∆Atl = 0 for all

l ∈ A(Ti)\{k}. Since Qti = 0, no matches with agent type j can be performed so that also

∆Dt
j,k = 0 for all j ∈ B(i). Overall, we have Zt+1

B(i) − Z
t
B(i) = ∆Atk = 1.

• If d(i, k) is even and k 6= i, then ∆Atk has a negative sign in the summation (38). Following

the same argument as above, we conclude that Zt+1
B(i) − Z

t
B(i) = ∆Atk = −1.

• If k = i, then ∆Atj = 0 for all j ∈ B(i). Since QtB(i) > 0, agent type i will be matched

with some l ∈ B(i) upon arrival; see Remark B.1. Thus, ∆Dt
l,i = 1 and ∆Dt

j,i = 0 for all

49



j ∈ B(i)\ {l}. Plugging into (38), we have that Zt+1
B(i) − Z

t
B(i) = −1.

An agent of type k arrives at time t+ 1 with probability λk so that we can conclude the following

from the three cases above:

E[(Zt+1
B(i))

2 − (ZtB(i))
2 | Qt, QtB(i) > 0] = E[(Zt+1

B(i) − Z
t
B(i))(Z

t+1
B(i) + ZtB(i)) | Q

t, QtB(i) > 0]

= −λi(2ZtB(i) − 1) +
∑

k∈A(Ti)\{i}:
d(i,k) is odd

λk(2Z
t
B(i) + 1)−

∑
k∈A(Ti)\{i}:
d(i,k) is even

λk(2Z
t
B(i) − 1)

= −2

(
λi −

∑
k∈A(Ti)\{i}:
d(i,k) is odd

λk +
∑

k∈A(Ti)\{i}:
d(i,k) is even

λk

)
ZtB(i) +

∑
k∈A(Ti)

λk

= (−2yiλ)ZtB(i) +
∑

k∈A(Ti)

λk

= −ηiZtB(i) + δi.

as stated. Now we prove the claim (37). We use strong induction on di, i ∈ A, where recall that

di = maxj∈U0∩V (Ti) d(i, j).

Basis. Consider i ∈ A such that di = 0. This implies i ∈ U0 so that Zti = yiQt = Qti =

(Ati −Dt
i,i↑

) = yiAt −Dt
i,i↑

as required. This concludes the basis of the induction.

Inductive step. Assume that the induction hypothesis holds for all i ∈ A such that di ≤ d, d ≥ 0.

Consider i ∈ A such that di = d+ 1. By the induction hypothesis, for all j ∈ B(i), we have

Ztj = yjAt −Dt
j,i.

By the construction of the surplus vectors, we have Zti = yiQt = Qi(t) −
∑

j∈B(i) y
jQt = Qti −∑

j∈B(i) Z
t
j . Since Qti = Ati −Dt

i,i↑
−
∑

j∈B(i)D
t
j,i, we have

Zi(t) = Qti −
∑
j∈B(i)

Ztj

=

(
Ati −Dt

i,i↑ −
∑
j∈B(i)

Dt
j,i

)
−
∑
j∈B(i)

(yjAt −Dt
j,i)

=

(
Ati −

∑
j∈B(i)

yjAt
)
−
( ∑
j∈B(i)

Dt
j,i −

∑
j∈B(i)

Dt
j,i

)
−Dt

i,i↑

= yiAt −Dt
i,i↑ .

Hence, the induction hypothesis holds for i ∈ A with di = d+ 1.
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