
BUSI 573: Stochastic Models in Operations Management Spring 2026

Lecture 1: Limit Theorems
Lecturer: Süleyman Kerimov Date: January 13, 2026

Disclaimer: These notes have adapted ideas from several expositional texts, including work by
Sheldon M. Ross and Erol A. Peköz. These notes are not meant to be complete or fully rigorous;
some proofs are not given, incomplete, or only outlined, as they are discussed in class.

1.1 Why do we need measure theory?

It is unfortunate that we are starting this course with an informal example. Consider a circle with
a radius of 1 meter. We say that two points (a and b) on the edge of the circle belong to the same
family if you can go from a to b, or, b to a, by traveling 1 meter around the edge of the circle.
Alternatively, you can consider an equivalence relation on the interval I = [0, 2π), where a, b ∈ I
belong to the same equivalence class if the distance from a to b is 1, given that you are allowed to
loop the interval.

Now each family will pick one of its members as a representative. What is the probability that a
point a selected uniformly at random on the edge of the circle is a representative? At first glance,
you may suspect that the answer is probably not 1, maybe it is 0.

Note that each family has infinitely many members: once you start from a point a, you will never
visit point a again. This is because the circumference of the circle is 2π, which is irrational. Consider
the following events

A = {a is a representative},

Bi = {a is i steps clockwise from the representative of its family},

Ci = {a is i steps counter-clockwise from the representative of its family}.

Since a is chosen uniformly at random, we must have P(A) = P(Bi) = P(Ci) by symmetry. More-
over, since every family has a representative, we must have

P(A) +

∞∑
i=1

(P(Bi) + P(Ci)) = 1. (1.1)

Let x = P(A). Then per (1.1), we get x +
∑∞
i=1 2x = 1, which has no solution for x ∈ [0, 1]. The

event A is an example of a non-measurable event, because we cannot measure its probability. The
reason why the example is not completely formal is that choosing exactly one representative from
each family requires the axiom of choice, which we will not discuss.
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Discussion 1.1. When X ∼ U [0, 1], the following looks contradictory: 1 = P(0 ≤ X ≤ 1) =∑
x∈[0,1] P(X = x) = 0?

Discussion 1.2. Argue that the set of rational numbers Q is countable (Cantor snake), and the set
of irrational numbers R \Q is uncountable (Cantor’s diagonal argument).

1.2 Probability spaces

Let Ω be an arbitrary set of points ω. For our purposes, Ω consists of all the possible results or
outcomes ω of an experiment or observation. Next we define a collection of subsets of Ω, where
these subsets can be viewed as events for which we can calculate a probability.

Definition 1.3. The collection of sets F is a sigma field (we also say σ-field), if it has the following
properties:

1. Ω ∈ F ,

2. If A ∈ F , then Ac ∈ F ,

3. If A1, A2, ... ∈ F , then ∪∞i=1Ai ∈ F .

We note that by DeMorgan’s law, which states that (∪∞i=1Ai)
c = ∩∞i=1A

c
i , (3) in Definition 1.3 can

be replaced with: if A1, A2, ... ∈ F , then ∩∞i=1Ai ∈ F . Therefore, σ-algebra is simply a non-empty
collection of subsets of Ω, which is closed under countable unions, countable intersections, and
complement. (Ω,F) is also referred as a measurable space.

Definition 1.4. A probability space is a measure space with total measure one. It is denoted by
(Ω,F ,P), where

• Ω is a set (also known as sample space)

• F is a σ-field of subsets of Ω (the sets in F are also known as events)

• P is a function from F to [0, 1] that satisfies P(Ω) = 1 and if A1, A2, ... ∈ F are pairwise
disjoint, then

P(∪∞i=1Ai) =

∞∑
i=1

P(Ai).

We write σ(A) to represent the smallest σ-field that contains the collection of events A. We also say
that σ(A) is the σ-field generated by A. Let’s say we want to calculate probabilities on the sample
space Ω = [0, 1] (for example, we want to sample a uniform random number from this interval).
One natural candidate for a σ-field F would be the collection of all possible subsets of Ω. But if you
remember our informal example in the introduction, we will not be able to equip this σ-field with a
probability measure P, since sets like the set of representatives will belong to F . What is the next
natural try? Consider the σ-field generated by the set of all singletons: F = σ({x}x∈[0,1]). But now,
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how can we calculate the probability that if a uniformly sampled random number belongs to the
interval [0, 0.5]? We cannot represent this interval (which is an uncountable set) with a countable
union of singletons. It turns out that the correct σ-field (which is called the Borel σ-field) is the
smallest σ-field generated by all intervals of the form [x, y): B = σ([x, y)x<y,x,y∈[0,1]). Finally, once
you consider the Lebesgue measure, defined by P([x, y)) = y−x for 0 ≤ x ≤ y ≤ 1, we are basically
good to go.

Discussion 1.5. Argue that singletons, set of rational and irrational numbers are in the Borel
σ-field on [0, 1].

Next, we discuss the continuity property of the probability function P. Let (An)n≥1 be a sequence
of events, and let

lim inf An := ∪∞n=1 ∩∞i=n Ai,
lim supAn := ∩∞n=1 ∪∞i=n Ai.

Note that by definition, we have lim inf An ⊂ lim supAn: lim inf An consists of all outcomes that are
contained in all but a finite number of events (An)n≥1, and lim supAn consists of all outcomes that
are contained in an infinite number of events (An)n≥1. We say that limnAn exists if lim supAn =
lim inf An.

We say that (An)n≥1 is an increasing sequence of events if An ⊂ An+1 for all n ≥ 1. Note
that ∩∞i=nAi = An in this case, thus, lim inf An := ∪∞n=1 ∩∞i=n Ai = ∪∞n=1An. Also note that
∪∞i=nAi = ∪∞i=1Ai. Thus, lim supAn := ∩∞n=1 ∪∞i=n Ai = ∩∞n=1 ∪∞i=1 Ai = ∪∞n=1An. Therefore,
limnAn = ∪∞n=1An.

We say that (An)n≥1 is a decreasing sequence of events if An ⊃ An+1 for all n ≥ 1. Via similar
arguments, it follows that limnAn = ∩∞n=1An in this case.

Proposition 1.6. If limnAn = A, then limn P(An) = P(A).

Proof of Proposition 1.6. First, assume that (An)n≥1 is an increasing sequence. Consider the se-
quence of events

Bn+1 = An+1 ∩Acn, ∀n ≥ 0,

where we define A0 = ∅. First, note that Bn’s are disjoint and that

n⋃
i=1

Bi = An and

∞⋃
i=1

Bi = A.

Then we can conclude that

P(A) = P

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

P(Bi) = lim
n

n∑
i=1

P(Bi) = lim
n

P

(
n⋃
i=1

Bi

)
= lim

n
P(An).

The proof when (An)n≥1 is a decreasing sequence of events, i.e., An ⊃ An+1 for all n ≥ 1, is similar
(via De Morgan’s law). Now we consider the general case. Let

Cn =

∞⋃
i=n

Ai.



1-4 Lecture 1: Limit Theorems

Note that the Cn’s are decreasing. Therefore,

lim
n

P(Cn) = P
(

lim
n
Cn

)
= P

( ∞⋂
n=1

Cn

)
.

Now let

Dn =

∞⋂
i=n

Ai.

Note that the Dn’s are increasing. Therefore,

lim
n

P(Dn) = P
(

lim
n
Dn

)
= P

( ∞⋃
n=1

Dn

)
.

Note that

Dn =

∞⋂
i=n

Ai ⊂ An ⊂
∞⋃
i=n

Ai = Cn,

which implies that

P(Dn) ≤ P(An) ≤ P(Cn).

Since limnAn = A exists, we have

lim inf An = lim supAn = A,

where

lim
n

P(Dn) = P
(

lim inf An

)
and lim

n
P(Cn) = P

(
lim supAn

)
,

which concludes the proof.

1.3 Intermezzo

To refresh your memory of probability theory, please refer to the notes on Canvas. What follows
are some definitions included for completeness of this lecture.

Definition 1.7. A random variable X is a function that assigns a real number to each outcome in
a sample space Ω. Formally, let (Ω,F ,P) be a probability space. Then a function X : Ω → R is
called a random variable if it satisfies {ω ∈ Ω : X(ω) ≤ x} ∈ F for all x ∈ R. We also say that
the random variable X is F-measurable.

Given a random variable X, we define the σ-algebra generated by X, denoted by σ(X), as the
smallest σ-algebra with respect to which X is measurable, that is

σ(X) = σ(X−1(B), B ∈ B(R)) = {X−1(B) : B ∈ B(R)}.
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Example 1.8. Consider an experiment, where we flip two coins, and let X be the number of heads.
Note that X−1({0}) = {TT}, X−1({1}) = {HT, TH}, X−1({2}) = {HH}. The σ-algebra must
contain the complements too, so that the σ-algebra generated by X is

σ(X) = {∅, {TT}, {HT, TH}, {HH}, {HT, TH,HH}, {TT,HT, TH}, {HH,HT, TH, TT}, {HH,TT}}.

Definition 1.9. Let X be a random variable and g be any function. If X is discrete, then the
expectation of g(X) is defined as

E[g(X)] =
∑
x∈Ω

g(x)f(x),

where f is the probability mass function of X. If X is continuous then the expectation of g(X) is
defined as

E[g(X)] =

∫ ∞
−∞

g(x)f(x) dx,

where f is the probability density function of X.

1.4 Lebesgue’s dominated convergence theorem

We are now concerned with fundamental results on interchanging limits and expectations of random
variables. We start with some preliminaries.

Definition 1.10. The sequence of random variables Xn, n ≥ 1, is said to converge almost surely
to a random variable X, written Xn →a.s. X, if

P( lim
n→∞

Xn = X) = 1.

An equivalent definition is the following. We say that Xn →a.s. X if and only if for any ε > 0,

lim
m→∞

P(|Xn −X|< ε for all n ≥ m) = 1.

Now consider the following example. Let U ∼ U(0, 1) and Xn = n1{n<1/U}. Note that Xn → 0
a.s., and therefore, E[limn→∞Xn] = 0. On the other hand, E[Xn] = nP(U < 1/n) = 1 for all
n, and therefore, limn→∞ E[Xn] = 1. One should be very careful when interchanging limits and
expectations! Lebesgue’s Dominated Convergence Theorem is a beautiful theorem that allows us
to interchange limits and expectations safely, i.e., it tells us under what condition we can write
Xn → X a.s. ⇒ E[limn→∞Xn] = limn→∞ E[Xn].

Theorem 1.11 (Monotone Convergence Theorem). If a sequence of non-negative random variables
increasingly converge to a random variable (written 0 ≤ Xn ↑ X), then E[Xn] ↑ E[X].

Theorem 1.11 can be used to prove the following result.

Proposition 1.12 (Fatou’s Lemma). Let Y be a random variable with E[|Y |] <∞. Then we have
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• If Y ≤ Xn, then E[lim inf Xn] ≤ lim inf E[Xn].

• If Y ≥ Xn, then E[lim supXn] ≥ lim sup E[Xn].

And, Proposition 1.12 can be used to prove the following result.

Theorem 1.13 (Lebesgue’s Dominated Convergence Theorem). Assume that Xn → X a.s., and
there is a random variable Y with E[Y ] < ∞ such that |Xn|< Y for all n. Then E[limn→∞Xn] =
limn→∞ E[Xn].

Proof of Theorem 1.13. Note that |Xn|< Y gives −Y ≤ Xn ≤ Y for all n. Per Proposition 1.12,
we have

E[X] = E[lim inf Xn] ≤ lim inf E[Xn] ≤ lim supE[Xn] ≤ E[lim supXn] = E[X],

Since E[X] = lim inf E[Xn] = lim sup E[Xn], the limit exists and limn→∞ E[Xn] = E[X].

Example 1.14. Using Proposition 1.11, let’s prove that if Xi ≥ 0 for all i ≥ 1, then E[
∑∞
i=1Xi] =∑∞

i=1 E[Xi]. We have

∞∑
n=1

E[Xn] = lim
k→∞

k∑
n=1

E[Xn] = lim
k→∞

E

[
k∑

n=1

Xn

]
= E

[ ∞∑
n=1

Xn

]
,

where the last equality follows from applying the monotone convergence theorem:

k∑
n=1

Xn ↑
∞∑
n=1

Xn.

The assumption that Xi ≥ 0 for all i ≥ 1 is crucial. If we drop this assumption, the statement in
Example 1.14 does not hold even if

∑∞
i=1Xi is convergent. Consider (αn)∞n=1 to be independent

and identically distributed (i.i.d.) random variables with P(α1 = ±1) = 1/2, and define a stopping
time τ = inf{n ≥ 1 :

∑n
k=1 αk = 1}. We will cover stopping times later in this lecture, but convince

yourself that P(τ <∞) = 1. Let Xn = αn1{τ≥n}. Then, we have that

∞∑
n=1

Xn =

∞∑
n=1

αn1{τ≥n} = α1 + · · ·+ ατ = 1,

so that E [
∑∞
n=1Xn] = 1.

Since the event {τ ≥ n} belongs to σ{α1, . . . , αn−1} (we will discuss more about this later, but
this basically means the occurrence of the event {τ ≥ n} can be determined on the information
available by all realizations {α1, . . . , αn−1}), αn and 1{τ≥n} are independent. Thus, we get

E[Xn] = E[αn]E[1{τ≥n}] = 0, n ≥ 1.

Thus
∑∞
n=1 E[Xn] = 0 6= E[

∑∞
n=1Xn].
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1.5 Convergence

Here we discuss two types of convergence: convergence in probability and convergence in distribu-
tion. Before that, we present a useful result.

Proposition 1.15 (Borel-Cantelli Lemma). Let (An)∞n=1 be a sequence of events.

1. If
∑∞
i=1 P(Ai) <∞, then P(lim supAn) = 0.

2. If
∑∞
i=1 P(Ai) =∞ and all events are independent, then P(lim supAn) = 1.

Proof of Proposition 1.15. We prove (1) first.

P
(

lim supAn

)
= P

 ∞⋂
k=1

∞⋃
j=k

Aj

 ≤ P

 ∞⋃
j=k

Aj

 for any k ≥ 1.

Then the result follows since

lim
k→∞

P

 ∞⋃
j=k

Aj

 = 0.

Now we prove (2). Let B = lim supAn. We will show that P(Bc) = 0. Let

Ci =
⋂
n≥i

Acn.

Then we have

Bc =

∞⋃
i=1

Ci.

Thus, we are done if P(Ci) = 0 for all i ≥ 1. For each i and k ≥ i, we have

P(Ci) = P

( ∞⋂
n=i

Acn

)
≤ P

(
k⋂
n=i

Acn

)
=

k∏
n=i

(1− P(An)).

Now we utilize the fact that log(1− x) ≤ −x for all x ∈ [0, 1]. This implies, for all k ≥ i,

log(P(Ci)) ≤
k∑
n=i

log(1− P(An)) ≤ −
k∑
n=i

P(An).

If this is true for all k ≥ i, then

log(P(Ci)) ≤ lim
k→∞

−
k∑
n=i

P(An) = −∞.

Hence, P(Ci) = 0 for all i ≥ 1. Note that (1) implies almost surely, only finitely many An’s will
occur, and (2) implies almost surely, infinitely many An’s will occur.
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Discussion 1.16. Consider the following experiment. We toss a coin every minute. The probability
that we get H on minute n is 1/n. Argue that almost surely, infinitely many heads will occur. If
the probability is 1/n2, then only finitely many times heads will occur, almost surely.

Definition 1.17. (Xn)∞n=1 converges in probability to a random variable X (written Xn →p X), if
for any ε > 0, P(|Xn −X|> ε)→ 0 as n→∞.

From the statement, it is immediate that almost sure convergence implies convergence in probability.
The opposite is not true as the following example shows.

Example 1.18. Let (Xn)n≥1 be a sequence of random variables with

P(Xn = 1) =
1

n
, and P(Xn = 0) = 1− 1

n
.

Note that for any ε > 0,

P{|Xn − 0|> ε} =
1

n
→ 0 as n→∞,

so that Xn →p 0. But since
∑∞
n=1 P(Xn = 1) = ∞, we have Xn = 1 for infinitely many values of

n, so we do not have almost sure convergence.

Theorem 1.19. If Xn →p X, then there is a subsequence (Xnk
)k≥1 which converges to X almost

surely.

Proof of Theorem 1.19. Since for every ε > 0, P(|Xn −X|> ε) → 0, we can find an index n1 such
that

P(|Xn1 −X|> 1/2) < 1/2.

Similarly, we can find an index n2 > n1 such that

P(|Xn2
−X|> 1/4) < 1/4.

Repeating the argument above, we get a subsequence (Xnk
)k≥1 such that for all k ≥ 1,

P(|Xnk
−X|> 1/2k) < 1/2k.

Since the series
∑∞
k=1 P(|Xnk

−X|> 2−k) converges, per Borel-Cantelli Lemma (Proposition 1.15),
only finitely many events

Ak = {|Xnk
−X|> 2−k}

occur almost surely. Therefore, Xnk
→ X almost surely.

Definition 1.20. Let Fn be the distribution function of Xn, and let F be the distribution function
of X. We say that Xn converges in distribution to X if limn→∞ Fn(x) = F (x) for all x at which
F is continuous.

Proposition 1.21. If Xn →p X, then Xn →d X. The converse is not true.

Example 1.22. Let (Xn)n≥1 be a sequence of Bernoulli random variables with p = 1/2. Also, let
X ∼ Bernoulli(1/2). Then clearly Xn →d X. But we don’t have convergence in probability, since
P(|Xn −X|≥ ε) = 1/2 for ε ∈ (0, 1) and for any n ≥ 1.
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Example 1.23. Let (Xn)n≥1 be a sequence of random variables with

Fn(x) =

1−
(

1− 1

n+ 1

)(n+1)x

, x > 0,

0, otherwise.

Then Xn →d X, where X ∼ exp(1). Clearly, for x ≤ 0, Fn(x) = FX(x). For x ≥ 0, we also have

lim
n→∞

Fn(x) = 1− lim
n→∞

(
1− 1

n+ 1

)(n+1)x

= 1− e−x = FX(x).

1.6 Law of large numbers

We will discuss more about probability inequalities later in the course, but we need some of them
now.

Proposition 1.24 (Markov’s inequality). If X is a nonnegative random variable, then for any
a > 0 we have

P(X ≥ a) ≤ E[X]

a
.

Proof of Proposition 1.24. Let 1{X≥a} be the indicator function, which is 1 if X ≥ a, and it is 0
otherwise. Since X ≥ 0, clearly we have a1{X≥a} ≤ X. Taking expectations proves the result.

Discussion 1.25. Here is a stronger version of Markov’s inequality. If X is a nonnegative random
variable, then for any a > 0 we have

P(X ≥ U · a) ≤ E[X]

a
,

where U ∼ U(0, 1).

Proposition 1.26 (Chebyshev’s inequality). If X is a random variable with V ar[X] < ∞, then
for any b > 0 we have

P(|X − E[X]|≥ b) ≤ V ar(X)

b2
.

Proof of Proposition 1.26. Since (X − E[X])2 is a nonnegative random variable, per Markov’s in-
equality with a = b2, we get

P((X − E[X])2 ≥ b2) ≤ E[(X − E[X])2]

b2
,

⇒ P(|X − E[X]|≥ b) ≤ V ar(X)

b2
.
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Theorem 1.27 (The Weak Law of Large Numbers). If (Xi)
∞
i=1 are i.i.d. with µ := E[X1] < ∞,

then for any ε > 0,

lim
n→∞

P
(∣∣∣ 1
n

n∑
i=1

Xi − µ
∣∣∣ > ε

)
= 0

Proof of Theorem 1.27. Note that the expectation of 1
n

∑n
i=1Xi is µ, and its variance is σ2

n . Then
per Chebyshev’s inequality, we have

lim
n→∞

P
(∣∣∣ 1
n

n∑
i=1

Xi − µ
∣∣∣ > ε

)
≤ lim
n→∞

σ2

nε2
= 0.

Theorem 1.28 (The Strong Law of Large Numbers). If (Xi)
∞
i=1 are i.i.d. with µ = E[X1] < ∞,

then

P
(

lim
n→∞

1

n

n∑
i=1

Xi = µ
)

= 1.

Proof of Theorem 1.28. We will prove a weaker version of the statement, where we assume that
K := E[X4

1 ] < ∞. Further assume that µ = 0, and we generalize the proof in the end. Let
Sn =

∑n
i=1Xi and consider

E[S4
n] = E [(X1 + · · ·+Xn)(X1 + · · ·+Xn)(X1 + · · ·+Xn)(X1 + · · ·+Xn)] .

Expanding the right-hand side, we get terms of the form

X4
i , X3

iXj , X2
iX

2
j , X2

iXjXk, and XiXjXkXl,

where i 6= j 6= k 6= l. Thanks to our independence assumption, we have

E[X3
iXj ] = E[X3

i ]E[Xj ] = 0,

E[X2
iXjXk] = E[X2

i ]E[Xj ]E[Xk] = 0,

E[XiXjXkXl] = 0.

For given pair i and j, there will be
(

4
2

)
= 6 terms in the expansion in the form of X2

iX
2
j . Thus,

we get

E[S4
n] = nE[X4

1 ] + 6

(
n

2

)
E[X2

1X
2
2 ].

Using independence again, E[S4
n] = nK + 3n(n − 1)E[X2

1 ]2. Now, since 0 ≤ Var(X1) = E[X2
1 ] −

(E[X1])2, we have
(E[X2

i ])2 ≤ E[X4
i ] = K.

Therefore, we have that
E[S4

n] ≤ nK + 3n(n− 1)K,
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which implies that

E
[S4

n

n4

]
≤ K/n3 + 3K/n2.

Therefore, it follows that

E

[ ∞∑
n=1

S4
n

n4

]
=

∞∑
n=1

E
[S4

n

n4

]
<∞.

Now, for any ε > 0, it follows from Markov’s inequality that

P
(S4

n

n4
> ε
)
≤ E

[S4
n

n4

]
/ε,

and therefore,
∞∑
n=1

P
(S4

n

n4
> ε
)
<∞,

which implies by the Borel–Cantelli lemma that S4
n/n

4 > ε for only finitely many n’s, almost surely.
Since this is true for all ε > 0, we can thus conclude that almost surely, we have

lim
n→∞

S4
n

n4
= 0.

If S4
n/n

4 → 0, then we must also have Sn/n→ 0. Hence, we have proven that, almost surely,

Sn
n
→ 0 as n→∞.

For the case when µ 6= 0, we can apply the same arguments to the random variables Xi − µ to
obtain that, almost surely, we have

lim
n→∞

1

n

n∑
i=1

(Xi − µ) = 0.
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