Lecture 2: Stein’s Method
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Disclaimer: These notes are primarily adapted from expositional texts, including work by Nathan
Ross and Remco van der Hofstad. These notes are not meant to be complete or fully rigorous; some
proofs are not given, incomplete, or only outlined, as they are discussed in class.

Stein’s method is a powerful tool that helps to prove various central limit theorems and quantify
the distance between two probability distributions. Recall the vanilla version of the central limit
theorem.

Theorem 2.1 (Central Limit Theorem). Let (X,,)n>1 be a sequence of independent and identically
distributed random variables. Let p = E[X1] and 0® = Var(X;) < oco. Let S, = Y.i_, X;. Then
we have
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where recall that N'(0,1) is the standard normal distribution with density f(z) = %

But, under stronger assumptions, one can be more explicit to quantify the error in the approxima-
tion, and be more precise regarding the rate of convergence.

Theorem 2.2 (Berry-Esseen Theorem). Let (X,,)n>1 be a sequence of independent and identically
distributed random variables with E[X1] = 0 and Var(X1) = 1, and assume that E[| X |}] < co. Let
@ be the cumulative distribution function of N'(0,1). Then we have

‘]P’(j"ﬁ < x) - (Z)(a:)‘ < 7.59]143[%3}.

This constant 7.59 was later improved by various papers. What central limit theorems suggest is
that common events can be approximated by the normal distribution. But, in the context of the
rare events, Poisson distribution provides a good approximation as well.

Theorem 2.3 (Poisson’s Law of Small Numbers). Let X ~ Bin(n,A/n), A > 0. Then for any
k € N, we have

P(X = k) — e*A%T = P(Poi(\) = k),

as n — o00.
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Proof of Theorem[2.3 We have

P(X =k) = (Z) (A/n)F(1 = N/n)"F

_ n(nf1)~I~€!(nfk:Jrl)(/\/n)k(l7/\/71)717,C
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For fixed k, as n — oo,
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Now we use the fact that exp(—p/(1 —p)) <1 —p < exp(—p) for all p € (0,1).

so that

Therefore, we can conclude
)\ n
1—=] —exp(—A) asn— .
n

Theorem implies that Bin(n,A\/n) —q Poi(A). What follows is a discussion around bounding
the distance between two probability distributions (e.g., distance between Bin(n, A/n) and Poi())).
Before introducing a powerful tool called coupling, let us first formalize what we mean by distance.

Definition 2.4. For two probability measures p and v, we define a probability metric as

dntpov) = sup | [ he)dutz) ~ [ ha)av(a)]|

heH

where h(-) is called a test function, and H is the family of test functions. Similarly, for two random
variables W and Z, the probability metric has the form

A(W, 2) := sup [E[(W)] - E[(2)]

Here are some examples of probability metrics. Let X ~ pand Y ~ v.
L If H = {l{<s : € R}, then we get the Kolmogorov-Smirnov metric, which is denoted by

dg. Thus, di (@, v) = sup,er|Fu(z) — F,(2)|= sup,cp|P(X < x) —P(Y < ), and it can be
interpreted as the maximum distance between distribution functions.
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2. If H = {l.cay : A€ B(R)}, then we get the total variation metric, which is denoted by drv.
Thus, drv (p,v) = supacpm)|u(A) — v(A)|= supsepr)|P(X € A) —P(Y € A)|. The total
variation metric us the main metric we use for approximation by discrete distributions.

It is immediate that for two random variables X and Y, dg(X,Y) < drv(X,Y). The following
lemma gives a nice characterization of the total variance distance.

Discussion 2.5. In the homework, you will show that if X andY are two discrete random variables
on , then
1
drv(X,Y) = 5 ;ZHP’(X =w) —P(Y =w)|.
w

Discussion 2.6. Let F and G be the distribution functions with continuous densities f and g,
respectively, i.e.,

pa) = [ r@de, wa) = [ ga)ds, (2.1)
for all measurable sets A C R. Then we have

1

it =5 [ (@) - glw)] d. (2.2)

2.1 Coupling

Definition 2.7 (Coupling of random variables). The random variables (X1, ..., X,) are a coupling
of the random variables (X1, ..., X,) when (Xl, . ,Xn) are defined on the same probability space,
and are such that the marginal distribution of X, is the same as that of X; foralli=1,...,n, i.e.,
for all measurable subsets € of R,

P(X; € £) = P(X; € £). (2.3)

Note that the following is a trivial coupling: take (Xl, .. ,Xn) to be independent, with X; having
the same distribution as X;. The following is another coupling: if X,Y,U ~ U(0,1), then (U,1-U)
is a coupling of (X,Y).

Now let X and Y be two discrete random variables with

P(X =2) = p, PY =y) =gy, reX, ye.
The following result links the total variation distance between two discrete random variables and a
coupling of them.

Theorem 2.8 A(Maximal coupling). For any two discrete random variables X and Y, there exists
a coupling (X,Y) of X and Y such that



2-4 Lecture 2: Stein’s Method

while, for any coupling ( Y)of X and Y,
P(X #Y) = drv(p,q). (2.5)

Moreover, the mazimal coupling ()A(,}A/) satisfies the following:

P(X =Y = z) = min(ps, ¢a), (2.6)

max(py — ¢z, 0) - max(q, — py,0) x4y (2.7)
drv(p, q) ,

P(X =z )A’:y):

Theorem 2.9 (Poisson limit for binomial random variables). Let (I;)?_, be independent with I; ~

Bernoulli(p;), and let A\ =3 p;. Let X ="' | I;, and let Y be a Poisson random variable with
parameter . Then, there exists a coupling (X'7 )A/') of X andY such that

Z (2.8)

I A

Proof. Let J; ~ Poi(p;) and assume that (J;)?; are independent. Note that the respective mass
functions are

Pio =P =2)=p*1—p)'™™,  qio=P(Ji=1)= efpi% (2.2.24)

Let (IA“ jl) be a coupling of I;, J;, where (A i i) are independent for all i. Per Theorem for
each pair I;, J;, the maximal coupling ( J;) satisfies

1 — Pi, z=0
P(I; = J; = ) = min(pi s, giz) = § pie P, z=1 (2.9)
0, x> 2
since 1 — p; < e Pi for x = 0. Since 1 — e™P¢ < p;, we have
P(I; # J)) =1—-PI; = J;) =1— (1 — p;) — pie P = p;i(1 — e P?) < p2. (2.10)

Next, let X =" | [, and Y = 327 | J;. Then, X has the same distribution as X = 3" | I;, and
Y has the same distribution as ¥ = Soi i Ji ~ Poi(p1 + - + p,). Per Boole’s inequalit and

, we have
P(X #£Y) < (U ) Z]P)( [i # Ji) < ZP? (2.11)
i= i=1 i

'Let (A;)22, be a sequence of events. Then, we have P(US2; A; < Y50, P(A;).
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2.2 Stein-Chen Method

Now we discuss the Stein-Chen Method, which upper bounds the total variation metric between W
and Z, where W is some random variable and Z is a Poisson random variable. That is, we want to
show that
dry(W,Poi(N)) := sup |[P(W € A) —P(Poi(X) € A)]
ACZso

is small.

Proposition 2.10 (Characterizing operator of Poisson). For A > 0, define the functional operator
A by
Af(k) =Af(k+ 1) — kf(k).

1. If the random variable Z has the Poisson distribution with mean A, then EAf(Z) =0 for all
bounded f.

2. If for some non-negative integer-valued random variable W, EAf(W) = 0 for all bounded
functions f, then W has the Poisson distribution with mean .

Proof of Proposition[2.10. We only prove the first part. Note that

S /\k—i—l o )\k-{-l
E[f(Z+1)] =e? )=e? 1 1) =E[Zf(2Z)).
AE[f(Z+1)] = l;) o fht1) =e §<k+1>1(’” )f(k+1) =E[Zf(2)]
|
Having Proposition the following two results are very intuitive.
Proposition 2.11. Let Py(A) :=P(Poi(\) € A), A C Z>¢. The unique solution fa of
Malk+1) — kfa(k) = 1[k € A] — Pr(A) (2.12)

with f4(0) = 0 is given by
fA(k‘) = )\_ke)‘(k‘ —1)! ['P)\(A NUg) — 'P)\(A)P)\(Uk)],
where U, = {0,1,...,k —1}.

Exercise 2.12. Prove Proposition|2.11)

Thanks to Proposition we have the following immediately.

Proposition 2.13. If W > 0 is an integer-valued random variable with mean \, then

[P(W € A) = PA(A)| = [EAfa(W + 1) = W fa(W)]].

One last result is needed to present the main theorem. [ |
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Proposition 2.14. If fa solves (2.12)), then
1—e?

Ifall < min{1, 712} and - Af(R) = 1f(k+1) = FR)]I< —;

< min{1, A7},

where || f||:= sup,epl|f(z)| and D is the domain of f.

Theorem 2.15 (Poisson Approximation Theorem). Let F be the set of functions satisfying the
conditions in Proposition [2.1]} If W > 0 is an integer-valued random variable with mean X and
Z ~ Po(N), then

drv(W, Z) < sup EAf(W+1) =W FW]|. (4.4)

Let’s now apply Theorem to generalize Theorem recall we have already shown that
X, ~ Bin(n,\/n) and Z ~ Poi(}) then dpy(W,,, Z) — 0 as n — oo,

4.1 Law of small numbers

It is well known that if X,, ~ Bin(n, A/n) and Z ~ Poi()\) then dpy (W, Z) — 0 as n — oo,

Theorem 2.16 (Theorem 4.6). Let Xi,..., X, be independent Bernoulli random variables with
P(X;=1)=p;, W=>",X;, and \=E[W]| =" pi. If Z~ Poi(}), then

dry(W, Z) < min{1, A7} Y p?

=1

Proof. The second inequality is clear and is only included to address the discussion preceding the
theorem. For the first inequality, we apply Theorem 4.5. Let f satisfy (4.2) and note that

= ZE[XJ(W)
= ZE V| X =1P(X; = 1)
= sz FW; +1)], (4.5)

where W; = W—X, and (4.5) follows since X; is independent of W;. Since Af(W+1) =3, p; f(W+
1), we obtain

EAf(W +1) = WF(W)]| = sz OV +1) = f(W + D] <Y pil AFIBIW — Wi).
=1

To see why the inequality holds, note that f(W 4+ 1) — f(W; +1) = ZZV:WH_l flk+1)— f(k) so

that by the triangle inequality |f(W + 1) — f(W; + 1)|< ZkW:WiHHAfH: [|Af|||W — W;|, and we
just take the expectation.
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Since |W — W;|= X;, we get

[EAS(W +1) =W fW)]| < HAJCHZPZ‘E[Xi] = IIAfIIZp?-

Using ||Af||< min{1, A\=!} from (4.2), we conclude that

dry(W, Z) < min{1,A7"'}) " p}.

i=1

By Theorem [2.15 we are done. [ |
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