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Disclaimer: These notes are primarily adapted from expositional texts, including work by Nathan
Ross and Remco van der Hofstad. These notes are not meant to be complete or fully rigorous; some
proofs are not given, incomplete, or only outlined, as they are discussed in class.

Stein’s method is a powerful tool that helps to prove various central limit theorems and quantify
the distance between two probability distributions. Recall the vanilla version of the central limit
theorem.

Theorem 2.1 (Central Limit Theorem). Let (Xn)n≥1 be a sequence of independent and identically
distributed random variables. Let µ = E[X1] and σ2 = V ar(X1) < ∞. Let Sn =

∑n
i=1 Xi. Then

we have

Sn − nµ

σ
√
n

→d N (0, 1),

where recall that N (0, 1) is the standard normal distribution with density f(x) = e−x2/2
√
2π

.

But, under stronger assumptions, one can be more explicit to quantify the error in the approxima-
tion, and be more precise regarding the rate of convergence.

Theorem 2.2 (Berry-Esseen Theorem). Let (Xn)n≥1 be a sequence of independent and identically
distributed random variables with E[X1] = 0 and V ar(X1) = 1, and assume that E[|X1|3] < ∞. Let
ϕ be the cumulative distribution function of N (0, 1). Then we have

∣∣∣P( Sn√
n
≤ x

)
− ϕ(x)

∣∣∣ ≤ 7.59
E[|X1|3]√

n
.

This constant 7.59 was later improved by various papers. What central limit theorems suggest is
that common events can be approximated by the normal distribution. But, in the context of the
rare events, Poisson distribution provides a good approximation as well.

Theorem 2.3 (Poisson’s Law of Small Numbers). Let X ∼ Bin(n, λ/n), λ > 0. Then for any
k ∈ N, we have

P(X = k) → e−λλ
k

k!
= P(Poi(λ) = k),

as n → ∞.
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Proof of Theorem 2.3. We have

P(X = k) =

(
n

k

)
(λ/n)k(1− λ/n)n−k

=
n(n− 1) · · · (n− k + 1)

k!
(λ/n)k(1− λ/n)n−k

= (1− λ/n)n · λ
k

k!
· n
n

n− 1

n
· · · n− k + 1

n
· (1− λ/n)−k.

For fixed k, as n → ∞,

n

n

n− 1

n
· · · n− k + 1

n
→ 1, (1− λ/n)k → 1.

Now we use the fact that exp(−p/(1− p)) ≤ 1− p ≤ exp(−p) for all p ∈ (0, 1).

exp

(
− λ/n

1− λ/n

)
≤ 1− λ

n
≤ exp(−λ/n),

so that

exp

(
− λ

1− λ/n

)
≤
(
1− λ

n

)n

≤ exp(−λ).

Therefore, we can conclude (
1− λ

n

)n

→ exp(−λ) as n → ∞.

Theorem 2.3 implies that Bin(n, λ/n) →d Poi(λ). What follows is a discussion around bounding
the distance between two probability distributions (e.g., distance between Bin(n, λ/n) and Poi(λ)).
Before introducing a powerful tool called coupling, let us first formalize what we mean by distance.

Definition 2.4. For two probability measures µ and ν, we define a probability metric as

dH(µ, ν) := sup
h∈H

∣∣∣ ∫ h(x)dµ(x)−
∫

h(x)dν(x)
∣∣∣,

where h(·) is called a test function, and H is the family of test functions. Similarly, for two random
variables W and Z, the probability metric has the form

dH(W,Z) := sup
h∈H

∣∣∣E[h(W )]− E[h(Z)]
∣∣∣

Here are some examples of probability metrics. Let X ∼ µ and Y ∼ ν.

1. If H = {1{·≤x} : x ∈ R}, then we get the Kolmogorov-Smirnov metric, which is denoted by
dK . Thus, dK(µ, ν) = supx∈R|Fµ(x)− Fν(x)|= supx∈R|P(X ≤ x)− P(Y ≤ x)|, and it can be
interpreted as the maximum distance between distribution functions.
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2. If H = {1{·∈A} : A ∈ B(R)}, then we get the total variation metric, which is denoted by dTV.
Thus, dTV (µ, ν) = supA∈B(R)|µ(A) − ν(A)|= supA∈B(R)|P(X ∈ A) − P(Y ∈ A)|. The total
variation metric us the main metric we use for approximation by discrete distributions.

It is immediate that for two random variables X and Y , dK(X,Y ) ≤ dTV (X,Y ). The following
lemma gives a nice characterization of the total variance distance.

Discussion 2.5. In the homework, you will show that if X and Y are two discrete random variables
on Ω, then

dTV (X,Y ) =
1

2

∑
w∈Ω

|P(X = ω)− P(Y = ω)|.

Discussion 2.6. Let F and G be the distribution functions with continuous densities f and g,
respectively, i.e.,

µ(A) =

∫
A

f(x) dx, ν(A) =

∫
A

g(x) dx, (2.1)

for all measurable sets A ⊆ R. Then we have

dTV(f, g) =
1

2

∫ ∞

−∞
|f(x)− g(x)| dx. (2.2)

2.1 Coupling

Definition 2.7 (Coupling of random variables). The random variables (X̂1, . . . , X̂n) are a coupling
of the random variables (X1, . . . , Xn) when (X̂1, . . . , X̂n) are defined on the same probability space,
and are such that the marginal distribution of X̂i is the same as that of Xi for all i = 1, . . . , n, i.e.,
for all measurable subsets E of R,

P(X̂i ∈ E) = P(Xi ∈ E). (2.3)

Note that the following is a trivial coupling: take (X̂1, . . . , X̂n) to be independent, with X̂i having
the same distribution as Xi. The following is another coupling: if X,Y, U ∼ U(0, 1), then (U, 1−U)
is a coupling of (X,Y ).

Now let X and Y be two discrete random variables with

P(X = x) = px, P(Y = y) = qy, x ∈ X , y ∈ Y.

The following result links the total variation distance between two discrete random variables and a
coupling of them.

Theorem 2.8 (Maximal coupling). For any two discrete random variables X and Y , there exists
a coupling (X̂, Ŷ ) of X and Y such that

P(X̂ ̸= Ŷ ) = dTV(p, q), (2.4)
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while, for any coupling (X̂, Ŷ ) of X and Y ,

P(X̂ ̸= Ŷ ) ≥ dTV(p, q). (2.5)

Moreover, the maximal coupling (X̂, Ŷ ) satisfies the following:

P(X̂ = Ŷ = x) = min(px, qx), (2.6)

P(X̂ = x, Ŷ = y) =
max(px − qx, 0) ·max(qy − py, 0)

dTV (p, q)
, x ̸= y. (2.7)

Theorem 2.9 (Poisson limit for binomial random variables). Let (Ii)
n
i=1 be independent with Ii ∼

Bernoulli(pi), and let λ =
∑n

i=1 pi. Let X =
∑n

i=1 Ii, and let Y be a Poisson random variable with

parameter λ. Then, there exists a coupling (X̂, Ŷ ) of X and Y such that

P(X̂ ̸= Ŷ ) ≤
n∑

i=1

p2i . (2.8)

Proof. Let Ji ∼ Poi(pi) and assume that (Ji)
n
i=1 are independent. Note that the respective mass

functions are

pi,x = P(Ii = x) = pxi (1− pi)
1−x, qi,x = P(Ji = x) = e−pi

pxi
x!

(2.2.24)

Let (Îi, Ĵi) be a coupling of Ii, Ji, where (Îi, Ĵi) are independent for all i. Per Theorem 2.8, for
each pair Ii, Ji, the maximal coupling (Îi, Ĵi) satisfies

P(Îi = Ĵi = x) = min(pi,x, qi,x) =


1− pi, x = 0

pie
−pi , x = 1

0, x ≥ 2

(2.9)

since 1− pi ≤ e−pi for x = 0. Since 1− e−pi ≤ pi, we have

P(Îi ̸= Ĵi) = 1− P(Îi = Ĵi) = 1− (1− pi)− pie
−pi = pi(1− e−pi) ≤ p2i . (2.10)

Next, let X̂ =
∑n

i=1 Îi and Ŷ =
∑n

i=1 Ĵi. Then, X̂ has the same distribution as X =
∑n

i=1 Ii, and

Ŷ has the same distribution as Y =
∑n

i=1 Ji ∼ Poi(p1 + · · · + pn). Per Boole’s inequality1 and
(2.10), we have

P(X̂ ̸= Ŷ ) ≤ P

(
n⋃

i=1

{Îi ̸= Ĵi}

)
≤

n∑
i=1

P(Îi ̸= Ĵi) ≤
n∑

i=1

p2i . (2.11)

1Let (Ai)
∞
i=1 be a sequence of events. Then, we have P(∪∞

i=1Ai ≤
∑∞

i=1 P(Ai).
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2.2 Stein-Chen Method

Now we discuss the Stein-Chen Method, which upper bounds the total variation metric between W
and Z, where W is some random variable and Z is a Poisson random variable. That is, we want to
show that

dTV(W,Poi(λ)) := sup
A⊂Z≥0

|P(W ∈ A)− P(Poi(λ) ∈ A)|

is small.

Proposition 2.10 (Characterizing operator of Poisson). For λ > 0, define the functional operator
A by

Af(k) = λf(k + 1)− kf(k).

1. If the random variable Z has the Poisson distribution with mean λ, then EAf(Z) = 0 for all
bounded f .

2. If for some non-negative integer-valued random variable W , EAf(W ) = 0 for all bounded
functions f , then W has the Poisson distribution with mean λ.

Proof of Proposition 2.10. We only prove the first part. Note that

λE[f(Z + 1)] = e−λ
∞∑
k=0

λk+1

k!
f(k + 1) = e−λ

∞∑
k=0

λk+1

(k + 1)!
(k + 1)f(k + 1) = E[Zf(Z)].

Having Proposition 2.10, the following two results are very intuitive.

Proposition 2.11. Let Pλ(A) := P(Poi(λ) ∈ A), A ⊆ Z≥0. The unique solution fA of

λfA(k + 1)− kfA(k) = 1[k ∈ A]− Pλ(A) (2.12)

with fA(0) = 0 is given by

fA(k) = λ−keλ(k − 1)! [Pλ(A ∩ Uk)− Pλ(A)Pλ(Uk)],

where Uk = {0, 1, . . . , k − 1}.

Exercise 2.12. Prove Proposition 2.11.

Thanks to Proposition 2.11, we have the following immediately.

Proposition 2.13. If W ≥ 0 is an integer-valued random variable with mean λ, then

|P(W ∈ A)− Pλ(A)| = |E[λfA(W + 1)−WfA(W )]|.

One last result is needed to present the main theorem.



2-6 Lecture 2: Stein’s Method

Proposition 2.14. If fA solves (2.12), then

∥fA∥≤ min{1, λ−1/2} and ∆f(k) := ∥f(k + 1)− f(k)∥≤ 1− e−λ

λ
≤ min{1, λ−1},

where ||f ||:= supx∈D|f(x)| and D is the domain of f .

Theorem 2.15 (Poisson Approximation Theorem). Let F be the set of functions satisfying the
conditions in Proposition 2.14. If W ≥ 0 is an integer-valued random variable with mean λ and
Z ∼ Po(λ), then

dTV(W,Z) ≤ sup
f∈F

|E[λf(W + 1)−Wf(W )]|. (4.4)

Let’s now apply Theorem 2.15 to generalize Theorem 2.3: recall we have already shown that
Xn ∼ Bin(n, λ/n) and Z ∼ Poi(λ) then dTV(Wn, Z) → 0 as n → ∞,

4.1 Law of small numbers

It is well known that if Xn ∼ Bin(n, λ/n) and Z ∼ Poi(λ) then dTV(Wn, Z) → 0 as n → ∞,

Theorem 2.16 (Theorem 4.6). Let X1, . . . , Xn be independent Bernoulli random variables with
P(Xi = 1) = pi, W =

∑n
i=1 Xi, and λ = E[W ] =

∑n
i=1 pi. If Z ∼ Poi(λ), then

dTV(W,Z) ≤ min{1, λ−1}
n∑

i=1

p2i

Proof. The second inequality is clear and is only included to address the discussion preceding the
theorem. For the first inequality, we apply Theorem 4.5. Let f satisfy (4.2) and note that

E[Wf(W )] =

n∑
i=1

E[Xif(W )]

=

n∑
i=1

E[f(W ) | Xi = 1]P(Xi = 1)

=

n∑
i=1

piE[f(Wi + 1)], (4.5)

whereWi = W−Xi and (4.5) follows sinceXi is independent ofWi. Since λf(W+1) =
∑

i pif(W+
1), we obtain

|E[λf(W + 1)−Wf(W )]| =

∣∣∣∣∣
n∑

i=1

pi E[f(W + 1)− f(Wi + 1)]

∣∣∣∣∣ ≤
n∑

i=1

pi∥∆f∥E[|W −Wi|].

To see why the inequality holds, note that f(W + 1) − f(Wi + 1) =
∑W

k=Wi+1 f(k + 1) − f(k) so

that by the triangle inequality |f(W + 1)− f(Wi + 1)|≤
∑W

k=Wi+1||∆f ||= ||∆f |||W −Wi|, and we
just take the expectation.
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Since |W −Wi|= Xi, we get

|E[λf(W + 1)−Wf(W )]| ≤ ∥∆f∥
n∑

i=1

piE[Xi] = ∥∆f∥
n∑

i=1

p2i .

Using ∥∆f∥≤ min{1, λ−1} from (4.2), we conclude that

dTV(W,Z) ≤ min{1, λ−1}
n∑

i=1

p2i .

By Theorem 2.15, we are done.
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