BUSI 573: Stochastic Models in Operations Management Spring 2026

Lecture 3: Concentration Inequalities
Lecturer: Sileyman Kerimov Date: January 27, 2026

Disclaimer: These notes are primarily adapted from expositional texts, including work by Michel
Goemans and Anupam Gupta. These notes are not meant to be complete or fully rigorous; some
proofs are not given, incomplete, or only outlined, as they are discussed in class.

3.1 Classical Bounds

We are interested in concentration inequalities, which help us understand how close random vari-
ables are to their expected values (or to other values). So far, we have studied Markov’s and
Chebyshev’s inequalities, which apply to a single random variable, and the law of large numbers,
which characterizes the behavior of sums of many random variables.

3.1.1 Chernoff Bound

The generic Chernoff bound is inspired by applying Markov’s inequality to the exponential of a
random variable. Note that for any random variable X > 0 and a,t > 0, we have P(X > a) =

X
P(etX > elt) < ]E[::a ]7 since !X is monotonically increasing. If S,, = ZZ:1 X, then we also have
P(S, > a) < e "E[[];_, e"*i], which looks useful when the random variables are independent.
One gets useful (sometimes tight) bounds when optimizing the right-hand side over ¢.

Example 3.1. Let (X;)?_; be a sequence of i.i.d. Bernoulli random variables with P(X = 1) = p,
and let X =1 | X;. First, note that

E[e"*] = pe’ + (1 — p)e”
=1+4p(e' —1)
< eple'=1), (3.1)

where we used 1+ x < e® with x = p(e? —1).
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< efat]E[etZi Xl}
< e_at]E[etxl] E[etXQ] ~-~E[etX”]

et o201y P(@t—l)7 (3.2)

IN

where (3.2) follows from (3.1). Now taking a = (14 0)E[X] = (1 + §)np and t = log(1 +§), we get

enp(1+571)
(1 + 5)(1+5)np

<|a +e;>1+6]np‘ "

Using arguments analogous to the ones in Example[3.I] we can get the following two general results.

P(X > (14 8)np) <

Theorem 3.2 (Chernoff bound for Bernoulli trials). Let X = """ | X;, where X; = 1 with prob-
ability p; and X; = 0 with probability 1 — p;, and suppose that X1, ...,X,, are independent. Let
pw=E[X] =" pi. Then we have

(i) Upper Tail:

2
P(X > (1+0)p) < eXp(—Qi_(S u) . foralld>0.
(ii) Lower Tail:
2
P(X < (1-96)u) Sexp(—@) , for all0 <6 < 1.

Combining both bounds for § € (0,1) yields
52
P(|X — pu[> dp) < 2exp ( - %)

Theorem 3.3 (Chernoff bound for bounded random variables). Let X, Xs,..., X, be random
variables such that

a<X; <b foralli.
Let
X:ZXi and p=E[X].
i=1

Then, for all § > 0:
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(i) Upper Tail:
]P)(X>(1+5) )<e ,ﬂ
- :u‘ — Xp n(b_a)2 *
(ii) Lower Tail:
252M2
< — < - .
P(X <(1-96)u) < exp( (b= a)2>

Example 3.4. Suppose that we are repeatedly tossing a fair coin. Let S, be the number of heads
we observe from the first n tosses. Per Chebyshev’s inequality, we get P(|S,/n—1/2]> €) < 1/4ne?.
For example, when € = 1/2, we get P(|S,,/n—1/2|> 1/2) < 4/n. If we use Chernoff bound instead,
per Theorem 3.3, we have
n n né?
—_ 2 >62) < - ).
P(S" 2)—52) —zeXp< 6 )

When 6 = 1/2, we obtain P(|S,, —1/2|> 1/4) < 2exp(—n/24), which is a much better bound.

3.1.2 Hoeffding’s Inequality

Theorem 3.5 (Hoeffding’s Inequality). Let (X;)_; be a sequence of independent bounded random
variables with a; < X; < b; for all i = 1,...,n with probability 1. Let S, = > | X;. Then for any
t > 0, we have

P(|Sn — E[Sn]|> t) < 2exp(—z’?1(2bi—ai)2) '

Proof of Theorem[3.5. We start with a useful result (Hoeffding’s Lemma), which you will prove
in your homework: if YV is a random variable with E[Y] = 0 and @ < Y < b, then we have

2 2
Elexp(tY)] < exp(@). The proof simply uses the convexity of the exponential function, i.e.,
el < Y=2eth 4 Z:—zem for all a <y < b.
Now, note that by Markov’s inequality, for all s > 0 we have

E [e5(Sn—EISh])]

Pr[S, — E[S,] > t] = Pr [6s<sn—msn]> > 6st] < :
eS

(3.3)

Letting Y; = X; — E[X;], we get

i=1

n n
E[eswmm[sm} _ E[eszzggxfmxi])] _E lH es(XiE[Xm] _E lH ey]
i=1
Per Hoeffding’s Lemma, we get

[ - sY.‘| T 20iman)?
E H et < H e 3 (3.4)
i=1 i=1
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Using the bound (3.4)) in , we get

exp(% S0, (b — a;)?)

Pr[Sn - E[Sn] > t} exp(st)

IN

(3.5)

Now it is time to optimize the right-hand side. It is easy to see that s = W is the
i=1\% i
minimizer of the right-hand side. Hence, we have

Pr[S,, — E[S] > 1] < exp(_m> . (3.6)

In a similar fashion, one can prove that for all t > 0

Pr[S, —E[Sp] < —t] < eXP<—m> . (17)

Combining both inequalities, we get

P(|S, — E[Sp]|>t) < 2exp(—z’?1(2bi—ai)2) '

3.2 Martingale Inequalities

The family of random variables {X (¢) : t € T} is called a stochastic process, where the parameter
t is interpreted as time, and X (t) is interpreted as the state of the process at time ¢. Throughout
the semester, we will study numerous stochastic processes to model queueing systems, dynamic
matching markets, online resource allocation settings, etc. We finish this lecture with an important
family of stochastic processes: martingales.

Definition 3.6. Let (2, F,P) be a probability space. Then a filtration on the probability space is
an increasing family of sub-o-fields (Fp)n>0 of F such that F, C Fupy1 C F for alln > 1. We
further say that a stochastic process X = (X,)n>1 s adapted to the filtration (Fp)n>1 if X, is
Fn—measurable.

What are we trying to achieve via filtration here? If you consider the parameter n as time, then
intuitively you can interpret J,, as all historical information that is available to us up to (and
including) time n. In other words, the value of X,, only depends on what has already happened up
to time n. The sigma fields are increasing over time, because we do not forget the history.

Definition 3.7. Let (Fp)n>1 be a filtration, and X is adapted to the filtration. Assume that
E[|X,]] < oo for alln > 1. Then,

1. X is called a martingale if E[X,|Fpn_1] = Xn-1 a.s. for alln > 2.
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2. X is called a supermartingale if E[X,|Fn_1] < Xpn_1 a.s. for alln > 2.
3. X is called a submartingale if B[ X,,|Fn—1] > Xn—1 a.s. for alln > 2.

If you are gambling in Las Vegas, then you are playing supermartingale games, while the casino is
playing submartingale games. This course is a fair game so we have a martingale. Note that in
Definition [3.71] by the tower property, E[E[X,|F,_1]] = E[X,] = E[X,,—1], and by recursively we
get E[X,,] = E[X;]. Similarly, one can also show that E[X,, ., |F,] = X,, for any m > 1.
Example 3.8. Let X1, Xo, ... be a sequence of independent random variables with E[|X,|] < oo for
alln > 1, and E[X,,] =0 for alln > 1. Let S, = Y. | X; and F,, = 0(X1, X2, ..., X»). Then
almost surely we have E[S,|Fn_1] = E[Xp|Frn-1] + E[Sn-1|Fn-1] = E[X,] + Sn—1 = Sn—1. Thus,
S, is a martingale.
Example 3.9. Let X, Xo, ... be a sequence of independent random variables with E[X,] = 1 for
allm > 1. Let My = 1, Fy = {0,9), M, = [[4_, Xk, and F,, = o(X1,Xo,....,X,,). Then
M = (My)n>o0 s a martingale, since E[M,|F,_1] = E[M,_1X,|Fn-1] = M, 1E[X,|F,-1] =
Mn—lE[Xn] =My_.
Example 3.10. Let X1, X5, ... be a sequence of independent and identically distributed random
variables with E[X1] = 0 and Var(X1) = 0®. Let S, = >, X; and define Z,, :== S2 — no? for
n>1. Let F, = 0(X1, X2, ..., Xy). Then Z, is a martingale, since
E[S2,, | Fn] =E[(Sn + Xnt+1)? | Fn]

=E[S? | Fu] +E28n Xni1 | Ful + E[ X2, | o]

=52 + 28,E[Xpt1 | Fu] +E[X2 4]

=82 + 28, E[Xp41] + 0

=52 + 0%
Definition 3.11. A map T : Q — Z>o U {00} is called a stopping time if {T < n} ={w: T(w) <
n} € Fy, for alln € Z>o U {oo}.

It is a simple exercise to show that in Definition {T < n} € F, is equivalent to {T'=n} € F,
or {T > n} € F,_1. Intuitively, whether the process will stop at time n according to your stopping
time T depends only on the history up to (and including) time n.

Example 3.12. Given a sequence of independent random variables (X,)n>1, the first time X,
hits an arbitrary set A, i.e., T4 = min{n : X,, € A}, is clearly a stopping time. But the last time
that X, visits an arbitrary set A, i.e., Tgo = max{n : X,, € A}, or, the time when X,, reaches its
mazimum, i.e., T = min{n : X,, = maxy>1 Xy}, are not stopping times.

Theorem 3.13. Let X be a martingale, and T be a stopping time. Then Xpan, where T An =
min{7T,n}, is a martingale.
Proof of Theorem[3.13. It is easy to verify that Xoan = Xzam-1) + L{rsn} (Xn — Xn—1). Thus,

IE[*X—T/\n | ]:nfl] = E[XTA(n—l) | ]:nfl] +E[1{T2n}(Xn - anl) ‘ ]:n 1
= XT/\(n—l) + l{TZn} E[Xn - Xn—l | -Fn—l]
= XTA(n-1)-
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Theorem 3.14 (Martingale Stopping Theorem). Let (X,)n>1 be a martingale adapted to the
filtration (Fy)n>1, and suppose that T is a stopping time for this filtration. Then

E[X7] = E[X1],

if any of the following three sufficient conditions hold:

1. T is bounded, i.e., there exists a constant C' such that T'(w) < C for all w € Q;
2. X,, is bounded for allm and P(T < o0) = 1;
3. E[T] < 0o and X has bounded increments, i.e., there exists M < oo such that for alln > 1,

E[|Xni1 — Xnl| Fn] < M.

In the homework, you will prove the following result, which is a corollary of Theorem [3.14]

Theorem 3.15 (Wald’s Identity). Let X1, Xs,... be a sequence of independent and identically
distributed random variables, and let T be a stopping time for the filtration F, = o(X1, Xa, ..., Xy)
for alln > 1. IfE[T] < oo, then

E[)  Xi] =E[X:] - E[T].

i=1

Example 3.16 (Ballot counting problem). Assume that we have two candidates A and B, and
let No and N be the number of votes for each of the candidates A and B, respectively, with
Ny+Np = N. Assume that Ny > Np. We start counting votes one by one in a uniformly random
ordering. We want to find the probability that candidate A is always ahead when counting votes.
Let Yy, be the difference between the number of votes for candidates A and B after counting k votes.
Let Xy, = XJ/\IIV_’];‘ In the homework, you will first show that X = (Xj)k>o0 is @ martingale. Then you
will define a stopping time T = min{k € [0, N] : X, =0}, or T'= N — 1 if there is no such k and
apply Theorem[3.14)

The following result provides a concentration bound for martingales, where note that we are not
imposing independence (martingales can have dependent increments!).

Theorem 3.17 (Azuma-Hoeflding Inequality). Let (X,,)n>1 be a martingale adapted to the filtra-
tion (Fn)n>1 and assume that almost surely | X, — X,,—1|< ¢; for all n, where define Xo = E[X;].
Then, for all t > 0,
t2
P, o) <oy g ).
and

t2

Combining both bounds yields

t2
Pr(| X, — Xo[|<t) < 2€Xp<—w) :
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Note that one can view Theorem [3.17] as providing a concentration bound on the sum function of
random variables: X,, — Xy = Z?:l Y;, where Y; = X7 — Xy. The following result lets us getting
other bounds when the functions are relatively more general.

Theorem 3.18 (McDiarmid’s Inequality). Consider n independent random variables X1, ..., X,
taking values in A; for each i, and a function f: []_; A; — R satisfying

|f(z) — f(2")|< ¢; whenever x and &' differ only in the ith coordinate.

Let
be the expected value of the random variable f(X). Then for any 8 > 0,

2
Pr(f(X)>p+p) < exp(—ziﬂ cz) ,
=1 "1

and

Pr(f(X) < j—B) <e 25°
— xp| —=—— | -
=H B P Z?:l 012
Example 3.19. Consider the following balls and bins problem, where we throw n balls uniformly
at random and independently into n bins. Let B; denote the number of balls in bin i. Note that B;
is a Bin(n, 1/n) random variable. Per Markov’s inequality, we have
nedfm_ 11

PriB; > 14\ < _ bt
B 2 1+ A < 70 = T~y

However, Chebyshev’s inequality gives a much better bound, since

n-1/n-(1-1/n) (1-1/n) 1
Pr[|B; — 1|> )] < 32 =2 ~z

If we let A = 2y/n, the probability of any fixed bin having more than 2v/n + 1 balls is at most ﬁ.
Taking a union bound over all bins, we have that with probability at least 1 — n - ﬁ < i, the load
on every bin is at most 1+ 2/n.

Now, if we apply Chernoff bound for Bernoulli trials, we get

2
Pr[B; > 1+ )] < exp(—Q:\_/\) )

If we set A\ = O(logn), the probability that bin i has more than 1+ X balls is at most 1/n?. Taking
a union bound over all bins, the probability that any bin has at least 1+ X\ balls is at most 1/n, i.e.,
the mazimum load is O(logn) balls with high probability.

Now define f(X) = f(X1, Xa, ..., Xp) to be the number of empty bins, where X; denotes the location
of ball i, i.e., ball i is placed in bin number X;. Note that E[f(X)] = n(1 —1/n)"™ by linearity of
expectation. Noting that changing the assignment of one ball can only change the number of empty
bins by at most 1, we get the following bound by McDiarmid’s inequality:
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n _262
P(I£(X) = n(1—1/n)"| ) < 2exp (—— ).
Discussion 3.20. Suppose that you are drawing samples from a distribution X with E[X]| = u and
Var(X) = 0% Let’s say you have a bound on the variance, i.e., 0 < C. How large should the
sample size be to ensure that with probability 1 — p, the sample average is 2 away from the mean u?
What if you have a bound on the distribution instead, i.c., | X|< C?

Discussion 3.21. Consider the symmetric random walk. Denote the position of the random walk
after n steps by S, = Y i, Xi, where P(X; = 1) = P(X; = —1) = 1/2. What are the tail bounds
under Chebyshev’s and Hoeffding’s inequalities?

Discussion 3.22. Recall the coupon collector problem: given n different types of coupons, how

many coupons in expectation do we need to draw with replacement before having drawn each coupon
at least once? Using linearity of expectation, one can easily show that E[X] = Y1, e =
nH(n) = nlog(n), where H(n) is the harmonic number. What does Markov’s inequality, Cheby-

shev’s inequality imply on tail bounds?
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