BUSI 573: Stochastic Models in Operations Management Spring 2026

Lecture 4: Queueing Theory I
Lecturer: Sileyman Kerimov Date: February 3, 2026

Disclaimer: These notes are primarily adapted from expositional texts, including work by Jy-
otiprasad Medhi. These notes are not meant to be complete or fully rigorous; some proofs are not
given, incomplete, or only outlined, as they are discussed in class.

4.1 Preliminaries

Definition 4.1 (Markov chain). A stochastic process {Xn,n > 0} is called a Markov chain if, for
every x; € S,

Pr{X, =z, | Xn-1=2n-1,..., Xo=w0} =Pr{X,, =z, | Xpn_-1=2n_1}, (4.1)

The definition implies that given the present state of the system, the future is independent of the
past. The conditional probability

pjk(n) = Pr{Xn:k|Xn—1:j}7 Ji k€S,

is called the transition probability from state j to state k. We say that the chain is homogeneous if
pjr(n) does not depend on n, i.e.,

Pjik = Pr{Xn =k | Xp1= ,]} = Pr{X’n—i-’m =k | Xn—i—m—l = .]}
for all m € Z. Let P = (pi;)i,jes be the transition matrix.

Given an irreducible Markov chain (there is a single communicating class), then we have seen
(sometime in the past :)) that there is a unique probability distribution 7 on S such that 7P = 7.

Theorem 4.2 (Ergodic theorem for Markov chains). If {X;,t > 0} is a Markov chain on the state
space S with unique invariant distribution w, then for any initial condition, we have

n—1

lim 1 Z X, =2} =n(zx) VzebS, a.s.

In order to calculate 7, we use the global balance equations for the Markov chain, which states that
Tj = Y ;es TiPij, OF equivalently 7; ZjeS\{z’} Pij = ZjES\{i} TiDji-
Definition 4.3 (Reversibility). We say that a Markov chain is reversible if

P(th = ml,Xt2 =T2,.. '7Xt = xk’) = P(X57t1 = 'T17X57t2 = 1’2)"')XS*tk = xk‘)?

k

forallk eN, s;ty,...,tx €Z, and z1,...,z € S.
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Discussion 4.4. If we have reversibility, then we can calculate © via detailed balance equations,
which states that mjpj; = mips; for alli,j € S. We can check whether a Markov chain is reversible
via Kolmogorov’s closed loop criterion: an ergodic Markov chain is reversible if and only if

Pjoji Pjrjz =" " Pik—1jk = Piojr Pikjr—1 " " Pj2j1 Pjrjos (4'2)

for every finite sequence of distinct states jo, j1, j2, - - - Jk-

Now we turn our focus on queueing theory. A queueing system is characterized by

1. Arrival pattern of customers: whether arrivals occur singly or in batches, what distribution
governs the interrarrival times...
Service pattern of customers: what is the average time required to serve a customer...

The number of servers

- W N

The capacity of system: infinite or finite capacity...
5. The queue discipline: first-in-first-out (FIFO), last-in-first-out (LIFO), priority queues,...

Theorem 4.5 (Little’s Law). Given a queueing system, in the steady-state, let L be the average
number of customers in the system, let A be the average arrival rate, and let W be the average
waiting time (waiting in the queue plus waiting while getting service). Then L = \W.

Discussion 4.6. PASTA property.

4.2 Elementary Queueing Systems: Exponential Models

4.2.1 The M/M/1 model

We start with the simplest queueing system, the M/M/1 queue. Here, arrivals follow a Poisson
process with parameter A, i.e., the inter-arrival times are independent and exponential with mean
%, and the service times are independent and exponential with mean l% The utilization is defined
as p = ﬁ7 where N = 1.

Let L(t) be the number of customers (both waiting in the queue and receiving service) at time t
and let p,, = lim;_, oo P(L(t) = n) for all n > 0. Then, we have

APn = HPn+1, (n>0)

)\ 2
Oor  Pnt1 = ;pn = apn = 4" Pp—1

n+1
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or

Pn = a”po, n > 0.

Using the fact that ZZOZO pn = 1, for a < 1, we have

pn = (1—a)d", n=20,1,2,...

Since a = p, we get
po=(1-a)=1-p
and

n

pn:(l_p)p7 n=12...

Note that the distribution is geometric and is memoryless. Let N be the number of customers in
the system and W be the waiting time in the system in steady-state. Thus, we have

EIN] =Y np,=>_ n(l—p)p"
n=0 n=1
B — a1 _pP=p) _ p
=p(1 p);np ! 0 -1 (4.3)
and
E[N?] = ZnQpn = ZnZ(I —p)p"
= (1=p) Y _[(n* =n) +np"
n=1
o 2p? (L=p)p\ _  20° p
a0 (@t ) ST
_ (i’ . 2’)2 (4.4)
Therefore, we have
_ 2 _ 4
Var(N) = E[N?] — (E[N])* = o (4.5)
Using Little’s formula L = AW, we get
_E[N] 1 p 1
EW== =31, u(l = p) 4.6)
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4.2.2 M/M/1/K Model

Now we assume that there is a bound on the maximum queue-length, i.e., when there are K
customers waiting in the queue, any arrival leaves the system without getting a service. Analagous
calculations yield

ADn = UPn+1, n=20,1,2,..., K — 1. (4.7)

A
Pn = poa”, a=-, n=0,1,2,..., K. (4.8)
1

Using the fact that
K
an = 17
n=0
we have
K
P o=
n=0

Therefore,

K -1 1
n - —a
po = [Za] TieaE AT

HTO

—_— A= pu.

K+1’ a

We get for any n =0,1,..., K, that
1—a)a”
( [217 )\#M?
n 1 —ak+t
DPn = Ppo@ = 1 (4.9)

- A= pu.
K+1 a

We can find the expected number of customers in the system as follows. If A = p, then

LKfznpnfzK -

n=0

and if \ # p,

(I1-a)a
Ly = liaKHZna

~ (I-a)a 1—(K+1)a" + Ka"*!
1 —aK+L (1 —a)?

a (K + 1)af+1
l—a  1—akK+t
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where we used the geometric stair sum formula.

4.2.3 Birth and Death Process

Now consider the following generalization, where arrival and service rates are state-dependent. That
is, when there are n customers in the system, the arrival rate is A\,, and the service rate is u,. Not
much will change as now we have

AnPn = Mnt1Pn+1, n=0,1,2,... (4.10)
Thus,
A A Ane oA
Pn+1 = npn: - nlpn—lz"': i Do, n:O71727"'7
Hn+1 Hn+t1 Hn o PR+l
or
n—1 )\k
pn=]] po, n=12... (4.11)
o HE+1
Using Y7 o pn = 1, we get
1
Po (4.12)

= T .
1+ TS o

The necessary and sufficient condition for the existence of a steady state is the convergence of

Note that when A, = XA and p,, = p for all n =0,1,2,..., we recover the M/M/1 system.

4.2.4 The M/M /oo and M/M/c Models

In the M/M /oo, we assume that there are infinitely many servers. In the M/M/c model, we
consider ¢ (1 < ¢ < oo) parallel service channels having i.i.d. exponential service time distribution,
each with rate u. Can we capture these models with a suitable birth and death process?
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