
BUSI 573: Stochastic Models in Operations Management Spring 2026

Lecture 4: Queueing Theory I
Lecturer: Süleyman Kerimov Date: February 3, 2026

Disclaimer: These notes are primarily adapted from expositional texts, including work by Jy-
otiprasad Medhi. These notes are not meant to be complete or fully rigorous; some proofs are not
given, incomplete, or only outlined, as they are discussed in class.

4.1 Preliminaries

Definition 4.1 (Markov chain). A stochastic process {Xn, n ≥ 0} is called a Markov chain if, for
every xi ∈ S,

Pr{Xn = xn | Xn−1 = xn−1, . . . , X0 = x0} = Pr{Xn = xn | Xn−1 = xn−1}, (4.1)

The definition implies that given the present state of the system, the future is independent of the
past. The conditional probability

pjk(n) := Pr{Xn = k | Xn−1 = j}, j, k ∈ S,

is called the transition probability from state j to state k. We say that the chain is homogeneous if
pjk(n) does not depend on n, i.e.,

pjk := Pr{Xn = k | Xn−1 = j} = Pr{Xn+m = k | Xn+m−1 = j}

for all m ∈ Z. Let P = (pij)i,j∈S be the transition matrix.

Given an irreducible Markov chain (there is a single communicating class), then we have seen
(sometime in the past :)) that there is a unique probability distribution π on S such that πP = π.

Theorem 4.2 (Ergodic theorem for Markov chains). If {Xt, t ≥ 0} is a Markov chain on the state
space S with unique invariant distribution π, then for any initial condition, we have

lim
n→∞

1

n

n−1∑
t=0

1{Xt = x} = π(x) ∀x ∈ S, a.s.

In order to calculate π, we use the global balance equations for the Markov chain, which states that
πj =

∑
i∈S πipij , or equivalently πi

∑
j∈S\{i} pij =

∑
j∈S\{i} πjpji.

Definition 4.3 (Reversibility). We say that a Markov chain is reversible if

P (Xt1 = x1, Xt2 = x2, . . . , Xtk = xk) = P (Xs−t1 = x1, Xs−t2 = x2, . . . , Xs−tk = xk),

for all k ∈ N, s, t1, . . . , tk ∈ Z, and x1, . . . , xk ∈ S.
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Discussion 4.4. If we have reversibility, then we can calculate π via detailed balance equations,
which states that πjpji = πipij for all i, j ∈ S. We can check whether a Markov chain is reversible
via Kolmogorov’s closed loop criterion: an ergodic Markov chain is reversible if and only if

pj0j1 pj1j2 · · · pjk−1jk = pj0jk pjkjk−1
· · · pj2j1 pj1j0 , (4.2)

for every finite sequence of distinct states j0, j1, j2, . . . , jk.

Now we turn our focus on queueing theory. A queueing system is characterized by

1. Arrival pattern of customers: whether arrivals occur singly or in batches, what distribution
governs the interrarrival times...

2. Service pattern of customers: what is the average time required to serve a customer...

3. The number of servers

4. The capacity of system: infinite or finite capacity...

5. The queue discipline: first-in-first-out (FIFO), last-in-first-out (LIFO), priority queues,...

Theorem 4.5 (Little’s Law). Given a queueing system, in the steady-state, let L be the average
number of customers in the system, let λ be the average arrival rate, and let W be the average
waiting time (waiting in the queue plus waiting while getting service). Then L = λW .

Discussion 4.6. PASTA property.

4.2 Elementary Queueing Systems: Exponential Models

4.2.1 The M/M/1 model

We start with the simplest queueing system, the M/M/1 queue. Here, arrivals follow a Poisson
process with parameter λ, i.e., the inter-arrival times are independent and exponential with mean
1
λ , and the service times are independent and exponential with mean 1

µ . The utilization is defined

as ρ = λ
Nµ , where N = 1.

Let L(t) be the number of customers (both waiting in the queue and receiving service) at time t
and let pn = limt→∞ P(L(t) = n) for all n ≥ 0. Then, we have

λpn = µpn+1, (n ≥ 0)

or pn+1 =
λ

µ
pn = apn = a2pn−1

...

= an+1p0
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or

pn = anp0, n ≥ 0.

Using the fact that
∑∞

n=0 pn = 1, for a < 1, we have

pn = (1− a)an, n = 0, 1, 2, . . .

Since a = ρ, we get

p0 = (1− a) = 1− ρ

and

pn = (1− ρ)ρn, n = 1, 2, . . .

Note that the distribution is geometric and is memoryless. Let N be the number of customers in
the system and W be the waiting time in the system in steady-state. Thus, we have

E[N ] =

∞∑
n=0

npn =

∞∑
n=1

n(1− ρ)ρn

= ρ(1− ρ)

∞∑
n=1

nρn−1 =
ρ(1− ρ)

(1− ρ)2
=

ρ

1− ρ
, (4.3)

and

E[N2] =

∞∑
n=0

n2pn =

∞∑
n=1

n2(1− ρ)ρn

= (1− ρ)

∞∑
n=1

[(n2 − n) + n]ρn

= (1− ρ)

(
2ρ2

(1− ρ)3
+

(1− ρ)ρ

(1− ρ)2

)
=

2ρ2

(1− ρ)2
+

ρ

1− ρ

=
ρ+ ρ2

(1− ρ)2
. (4.4)

Therefore, we have

V ar(N) = E[N2]− (E[N ])
2
=

ρ

(1− ρ)2
. (4.5)

Using Little’s formula L = λW , we get

E[W ] =
E[N ]

λ
=

1

λ

ρ

1− ρ
=

1

µ(1− ρ)
. (4.6)



4-4 Lecture 4: Queueing Theory I

4.2.2 M/M/1/K Model

Now we assume that there is a bound on the maximum queue-length, i.e., when there are K
customers waiting in the queue, any arrival leaves the system without getting a service. Analagous
calculations yield

λpn = µpn+1, n = 0, 1, 2, . . . ,K − 1. (4.7)

pn = p0a
n, a =

λ

µ
, n = 0, 1, 2, . . . ,K. (4.8)

Using the fact that
K∑

n=0

pn = 1,

we have

p0

K∑
n=0

an = 1.

Therefore,

p0 =


[

K∑
n=0

an

]−1

=
1− a

1− aK+1
, λ ̸= µ,

1

K + 1
, λ = µ.

We get for any n = 0, 1, . . . ,K, that

pn = p0a
n =


(1− a)an

1− aK+1
, λ ̸= µ,

1

K + 1
, λ = µ.

(4.9)

We can find the expected number of customers in the system as follows. If λ = µ, then

LK =

K∑
n=0

npn =

K∑
n=0

n

K + 1
=

K

2
,

and if λ ̸= µ,

LK =
(1− a)a

1− aK+1

K∑
n=0

nan−1

=
(1− a)a

1− aK+1

1− (K + 1)aK +KaK+1

(1− a)2

=
a

1− a
− (K + 1)aK+1

1− aK+1
.
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where we used the geometric stair sum formula.

4.2.3 Birth and Death Process

Now consider the following generalization, where arrival and service rates are state-dependent. That
is, when there are n customers in the system, the arrival rate is λn and the service rate is µn. Not
much will change as now we have

λnpn = µn+1pn+1, n = 0, 1, 2, . . . (4.10)

Thus,

pn+1 =
λn

µn+1
pn =

λn

µn+1

λn−1

µn
pn−1 = · · · =

n∏
k=0

λk

µk+1
p0, n = 0, 1, 2, . . . ,

or

pn =

n−1∏
k=0

λk

µk+1
p0, n = 1, 2, . . . (4.11)

Using
∑∞

n=0 pn = 1, we get

p0 =
1

1 +
∑∞

n=1

∏n−1
k=0

λk

µk+1

. (4.12)

The necessary and sufficient condition for the existence of a steady state is the convergence of

∞∑
n=1

n−1∏
k=0

λk

µk+1
,

Note that when λn = λ and µn = µ for all n = 0, 1, 2, . . ., we recover the M/M/1 system.

4.2.4 The M/M/∞ and M/M/c Models

In the M/M/∞, we assume that there are infinitely many servers. In the M/M/c model, we
consider c (1 < c < ∞) parallel service channels having i.i.d. exponential service time distribution,
each with rate µ. Can we capture these models with a suitable birth and death process?
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