BUSI 573: Stochastic Models in Operations Management Spring 2026

Lecture 5: Queueing Theory II

Lecturer: Sileyman Kerimov Date: February 10, 2026

Disclaimer: These notes are primarily adapted from expositional texts, including work by Jy-
otiprasad Medhi. These notes are not meant to be complete or fully rigorous; some proofs are not
given, incomplete, or only outlined, as they are discussed in class.

5.1 Continuous-Time Markov Chains

Following our discussion on Lecture 4, we start with another set of preliminaries. Let {X(¢),0 <
t < oo} be a Markov process with countable state space S = {0,1,2,...}. Assume that the process
is time homogeneous. Then the transition probability function given by

piyt) = Pr{X(t+u)=j | X(u) =i}, >0, i,j€S, (5.1)
is then independent of u > 0. Then for all ¢ > 0, we have

0 < pi;(t) <1, Zpij(t) =1, forallies.
J

Denote the matrix of transition probabilities by

P(t) = (pi (1)), i, € 8.

Set p;;(0) = d;; (Kronecker delta function). Then the initial condition can be written as

P(0) = I.

Denote the probability that the system is at state j at time t by
m;(t) = Pr{X(t) = j};

the vector m(t) = {m1(t),m=2(t),...} is the probability vector of the state of the system at time ¢,
and 7(0) is the initial probability vector. We get

7i(t) = ZPr{X(t—!—u) =7 X(u) =i} Pr{X(u) =1}
=2 () Pr{X(0) = i}
=2 _pii(t)mi(0).
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Thus, once we are given an initial probability vector w(0) and the transition functions p;;(t), the
state probabilities can be calculated as follows:

7(t) = m(0)P(%).

Definition 5.1 (Sojourn time). The waiting time for change of state from state i is a random
variable denoted by 7;, and it is called the sojourn time at state 1.

Note that

Pr{r;, >s+t| X(0) =i} =Pr{r, >s+t| X(0) =14, i, >s}Pr{r >s| X(0) =1}, t>0.

(5.2)
Denote B
Fi(u) :=Pr{r, > u | X(0) = i}, u > 0.
Then (5.2)) can be written as follows:
Fi(t +s) = Fi(t) Fi(s), s,t > 0.
The only right continuous solution of this functional equation is (do you know why?)
Fy(u) = e™ %", u >0, a;>0isa constant. (5.3)

This implies that the sojourn time 7; at state i is distributed exponentially with parameter a;.
Moreover, the sojourn times 7; and 7; are independent. Finally, we have t > 0, T' > 0,

pz](T + t) = Zpik(T)pkj(t)v i7j7 kes. (54)
k

or, in matrix form,
P(T+t)=P(T)P(t). (5.5)

(5.5 is called the Chapman-Kolmogorov equation.

5.1.1 Transition density matrix

Now we discuss the transition density matrix, which is also known as infinitesimal generator or rate
matrix. Consider

i Pi(B) = pi (0) o pig(h)
s P20 g 20,

L F s (5.6)

and L 0
qi; = lim piu'( ) —Pii(0) = lim

pii(h) — 1
h—0 h h—0 ’

(5.7)
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Let —¢; := ¢i;. We only bother with the cases when ¢; and ¢;j are finite. Letting Q = (¢:j)i jes,
we have the following matrix notation

Q = lim %

h—0

From (5.6) and (5.7)), it follows that, when h is small,

pij(h) = hqij + o(h), P # s (5.8)

and
pii(h) =1 —hg; + o(h), (5.9)

where o(h) is a function of h that tends to zero more rapidly than h, i.e., O(,f) —0as h—0.

Now note that - p;;(h) = 1, which implies >, pij(h) +pii(h) —1 = 0. Thus, we get >, _; qij +
Gii = 0, 01, 3754, ¢ij = Gi-

The @Q-matrix Q) = (g;;) satisfies: (i) its diagonal elements are negative and off-diagonal elements

are positive, and (ii) the sum of each row is 0. If we have a finite set S = {0,1,2,...,m} then the
matrix looks like

—qo qo1 - Qqom

q10 —q1 e dim
Q=1 . : .

dmo dm1 e —Adm

5.2 Chapman-Kolmogorov Backward and Forward Equations

From (j5.5)), we have

ng h + t szk pk] szk pk] +pu(h)pij(t)a
k#i

so that

pi‘th — pij pz pii(h) —1
UL EHONS 0 My (UES) P
k#i

Now if we take the limit A — 0 and interchange the limit and summation operations (if the state
space is finite, this interchange is justified clearly, if the state space is countable, this interchange
is again justified if we assume that sup, ¢; < oo, that is if we have uniformly bounded jump rates),
we have

h—0 h—0 h

lim pij(h + 2 —pii(H) _ ) {hm pik(h)} pij(t) + [lim p“(hh)l] pi; (1),

ki
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or
pi(t) = Z qikPrj (t) + @ipij (1), (5.10)
ki

which is another form of the Chapman—Kolmogorov (backward) equation: in matrix notation, we
have P'(t) = QP(t).

We can also use (5.5)) as

pij(t+h) = > pir(O)pri(h) = pir()pr; (h) + pij ()pj; (h).
k ki

Again, if we take the limit and interchange it with the summation operation, we get

pi;(t) = Zpik(t)Qk'j + ¢;pi; (1), (5.11)
k#j

which is the Chapman-Kolmogorov forward equation: in matrix notation, we have P’(t) = P(t)Q).

Recall that 7(t) = w(0)P(t) so that both equations yield

d
Z () = Qn(t) = 7(1)Q. (5.12)

Discussion 5.2. Here is an alternative definition of continuous-time Markov chains (Ross, 1980).
Consider a stochastic process such that when you enter to state i, the time you spend at state 1
before you transition to another state j # i is an exponential random variable with parameter a;
(with mean ai) The parameter a; only depends on state i and it is independent of other states j’s.
When you leave state i, you immediately transition to another state (to state j with probability p;;).
Thus, we have

pis = 0, 0<py <1,
Zpij = 1, j (S S
J

Therefore, a continuous-time Markov chain is a stochastic process such that (i) its transition from
one state to another state of the state space S is as in a discrete-time Markov chain and (ii) the
sojourn time 7; is an exponential random variable with some parameter a;. The sojourn times in
different states must be independent exponential random variables.

To see the relationship between p;; and p;;(t), note that
pij(h) = ha;p;; + o(h),

since p;;(h) is the probability that the state of the process changes from i to j in an infinitesimal
interval h. Thus,
pij (h)

i = lim ———= = a;p;;
qij P, h iDij,
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Similarly, 1—p;;(h) is the probability that the state of the system changes from state i to some other
state in the interval h, so that

1 —pii(h) = aithij +o(h) = a;h + o(h).
J

Thus,
.1 —pi(h)

qi hli% n Qg3

Thus, the Q-matriz can also be written as
—ao appor - GoPom
aipio —ax Tt A1P1im
Q= . . . . : (5.13)
AmPmo  AmPmi - —am

5.3 Birth-and-Death Processes

A Dbirth-and-death process (which we discussed in Lecture 4) is a continuous-time Markov chain
{X(t),t € T} with state space S ={0,1,2,...} and with rates

Giit1 = A\ (say), 1=0,1,...,

Gii—1 = i (say), 1=1,2,...,
gi; =0, j#i£l,j#4i +=0,1,...,
@ = (N + i), 1=0,1,..., po=0,

From the Chapman-Kolmogorov forward equations, we get
For¢,7=1,2,...,

/

Pi (1) = —(Nj + w5)pi (1) + Nj—1pij—1(t) + pj+1pi 1 (2). (5.14)

and
Pio(t) = —Xopio(t) + papii (). (5.15)

Set the boundary conditions as

pi)j(0+) :6ija 1,7 =0,1,... (516)

Let
p;(t) =Pr{X(t) = j}, j=0,1,..., t>0.
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and assume that at time ¢ = 0, our initial condition starts at state i. Therefore,
P;(0) = Pr{X(0) = j} = 0y}, (5.17)

and
Pi(t) = pi; (1),
The forward equations become

P(t) = —(N\j + ) Pi(t) + Nj—1 Pj—1(t) + pj11 P (t), 5 =1,2,..., (5.18)

Py(t) = =XoPo(t) + pa Pr(1). (5.19)

Suppose that all the A;’s and p;’s are nonzero to ensure that the Markov chain is irreducible (single
communicating class). Since we have ergodicity, the following limit

Jim pi;(t) = p;
exist, and they are independent of the initial state . Then per ((5.18) and (5.19)), we obtain
0=—O +p)pi + XNj1pj1 + pjapi, 721, (5.20)
0= —>\0p0 + pipa. (521)

Finally, one can show by solving the above equations inductively that if Z;‘;O T, < 00, where

AoAL A
=L AT >, me=1, (5.22)
K12 - Hy
then we have -
J .
pj = ) Jj=0. 5.23
T kT ( )

5.3.1 The M/M/c model

Now let’s revisit our discussion on the M/M/c model. Assume that we have a single queue having
Poisson arrivals with rate A, and there are 1 < ¢ < oo parallel servers, each having an i.i.d.
exponential service time with mean % We can capture this model with a suitable birth-and-death
process.

Note that if there are n customers in the system, where n < ¢, then first n servers are busy and the
time between two consecutive service completions is the minimum of n i.i.d. exponential random
variables with each parameter being p, where the minimum is exponential with rate nu. If there
are at least ¢ many customers in the system (that is, n > ¢) then all ¢ servers are busy and the
time between two consecutive service completions is exponential with rate cu. Thus, we have a
birth-and-death process with birth rate A and death rates

Hn = N, TL:0,172,...7C,
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Un = ClL, n=c+1l,c+2,....

Denote the utilization p = A/(cu). Assume that steady state exists and that the system is in steady
state. From the previous section, we get for 1 < n < ¢,
AN A (A )™ A

P = @)y 70T T PO T Pt (5.24)

and for n > ¢, we get

- )+ () N
" ) el len) ) e

A” A )™
= | c ,~n—c nfcp():(l/if)fcpo
Cc: U~ c 1% Cc: C
A n—c
= —Pn-1=0p Pe- (525)
cp

In a more compact form, for all n > 1, we can write

[min(na C)Lupn = A\Pp—1-

Using the fact that Y.~ ;p, = 1, we have

R GV YCV/

— n! — cl ecn—¢
c—1 e} n
M 1 A
= = . 5.26
; n! + cl c¢ 7;0 cu ( )

To guarantee the existence of a steady-state, the series Y~ (A/(cp))™ must be convergent, which
implies that p < 1. Finally we get,

c—1

A )" spe |
= |y (1(—/53(6;1))] | (5:27)

n=0

Note that we can analyze the M/M /oo model in a similar fashion.

5.3.2 The M/m/c/c System: Erlang Loss Model

Now consider the M/m/c model with an additional twist: if all the ¢ servers are busy, any arrival
leaves the system without getting a service. Such systems where arrivals are rejected are called a
loss system. This is a birth-and-death process with

A=A pp=nu, n=0,1,2...,c—1, and
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Pn=—1"Po, = 1,...,c, (5.28)
pn=0, n>c, (5.29)
and .
= ()
o= 1> 5 (5.30)
k=0
Thus,
(A)n /n!
pp=—tl o =0,1,2,...,c (5.31)

s, (2) e

The distribution of {p,} is also called truncated Poisson.

5.3.3 Priorities

Discussion 5.3. Which system is more efficient?: (i) n M/M/1 queues with arrival rates A and
service rates p, or, (i) a single M/M/1 queue with arrival rate An and service rate un. Pooling
reduces congestion in general, but not always?

Discussion 5.4. Now let’s consider an M/M/1 queue with two types of customers: type 1 and
type 2. Type i customers arrive independently according to a Poisson process with rate \;, i = 1, 2.
For simplicity, let’s assume that the service times of all customers are exponentially distributed
with parameter . For stability, we must assume py + pa < 1, where p; = 2. Assume that type
1 customers have a strict priority over type 2 customers. That is, if there is an arrival of type 1
customer to the system, and type 2 customer is receiving a service, then we interrupt this service
and we start serving the arriving type 1 customer, where type 2 customer rejoins the queue (it

actually does not matter where exactly this customers rejoins: top of the line, end of the line, etc.)

We first note that type 1 customers can completely neglect type 2 customers. Therefore, the average

number of type 1 customers in the system L, = 1f1pl, and the average waiting time of type 1

customers is Wy = % by Little’s Law.

Because of the memoryless property, and the fact that the service times are distributed with the
same mean, the (average) total number of customers in the system L = Ly + Lo does not depend
on the priority rule we impose. The crucial assumption we are making here is that the servers are
not idling intentionally, i.e., the server only idles when the system is completely empty. Therefore,

L= %. Therefore, we have Ly = L — L1 = (1—Pl)(€—2—l’1—f’2). By Little’s Law again, we can

also find the average waiting time of type 2 customers: Wy = i—;
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