
BUSI 573: Stochastic Models in Operations Management Spring 2026

Lecture 5: Queueing Theory II
Lecturer: Süleyman Kerimov Date: February 10, 2026

Disclaimer: These notes are primarily adapted from expositional texts, including work by Jy-
otiprasad Medhi. These notes are not meant to be complete or fully rigorous; some proofs are not
given, incomplete, or only outlined, as they are discussed in class.

5.1 Continuous-Time Markov Chains

Following our discussion on Lecture 4, we start with another set of preliminaries. Let {X(t), 0 ≤
t < ∞} be a Markov process with countable state space S = {0, 1, 2, . . .}. Assume that the process
is time homogeneous. Then the transition probability function given by

pij(t) = Pr{X(t+ u) = j | X(u) = i}, t > 0, i, j ∈ S, (5.1)

is then independent of u ≥ 0. Then for all t > 0, we have

0 ≤ pij(t) ≤ 1,
∑
j

pij(t) = 1, for all i ∈ S.

Denote the matrix of transition probabilities by

P (t) = (pij(t)), i, j ∈ S.

Set pij(0) = δij (Kronecker delta function). Then the initial condition can be written as

P (0) = I.

Denote the probability that the system is at state j at time t by

πj(t) = Pr{X(t) = j};

the vector π(t) = {π1(t), π2(t), . . .} is the probability vector of the state of the system at time t,
and π(0) is the initial probability vector. We get

πj(t) =
∑
i

Pr{X(t+ u) = j | X(u) = i}Pr{X(u) = i}

=
∑
i

pij(t) Pr{X(0) = i}

=
∑
i

pij(t)πi(0).
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Thus, once we are given an initial probability vector π(0) and the transition functions pij(t), the
state probabilities can be calculated as follows:

π(t) = π(0)P (t).

Definition 5.1 (Sojourn time). The waiting time for change of state from state i is a random
variable denoted by τi, and it is called the sojourn time at state i.

Note that

Pr{τi > s+ t | X(0) = i} = Pr{τi > s+ t | X(0) = i, τi > s}Pr{τi > s | X(0) = i}, t ≥ 0.
(5.2)

Denote
F̄i(u) := Pr{τi > u | X(0) = i}, u ≥ 0.

Then (5.2) can be written as follows:

F̄i(t+ s) = F̄i(t) F̄i(s), s, t ≥ 0.

The only right continuous solution of this functional equation is (do you know why?)

F̄i(u) = e−aiu, u ≥ 0, ai > 0 is a constant. (5.3)

This implies that the sojourn time τi at state i is distributed exponentially with parameter ai.
Moreover, the sojourn times τi and τj are independent. Finally, we have t ≥ 0, T ≥ 0,

pij(T + t) =
∑
k

pik(T ) pkj(t), i, j, k ∈ S. (5.4)

or, in matrix form,
P (T + t) = P (T )P (t). (5.5)

(5.5) is called the Chapman-Kolmogorov equation.

5.1.1 Transition density matrix

Now we discuss the transition density matrix, which is also known as infinitesimal generator or rate
matrix. Consider

qij = lim
h→0

pij(h)− pij(0)

h
= lim

h→0

pij(h)

h
, i ̸= j, (5.6)

and

qii = lim
h→0

pii(h)− pii(0)

h
= lim

h→0

pii(h)− 1

h
. (5.7)
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Let −qi := qii. We only bother with the cases when qi and qij are finite. Letting Q = (qij)i,j∈S ,
we have the following matrix notation

Q = lim
h→0

P (h)− I

h
.

From (5.6) and (5.7), it follows that, when h is small,

pij(h) = hqij + o(h), i ̸= j, (5.8)

and

pii(h) = 1− hqi + o(h), (5.9)

where o(h) is a function of h that tends to zero more rapidly than h, i.e., o(h)
h → 0 as h → 0.

Now note that
∑

j pij(h) = 1, which implies
∑

j ̸=i pij(h) + pii(h)− 1 = 0. Thus, we get
∑

j ̸=i qij +
qii = 0, or,

∑
j ̸=i qij = qi.

The Q-matrix Q = (qij) satisfies: (i) its diagonal elements are negative and off-diagonal elements
are positive, and (ii) the sum of each row is 0. If we have a finite set S = {0, 1, 2, . . . ,m} then the
matrix looks like

Q =


−q0 q01 · · · q0m
q10 −q1 · · · q1m
...

...
. . .

...
qm0 qm1 · · · −qm

 .

5.2 Chapman-Kolmogorov Backward and Forward Equations

From (5.5), we have

pij(h+ t) =
∑
k

pik(h)pkj(t) =
∑
k ̸=i

pik(h)pkj(t) + pii(h)pij(t),

so that
pij(h+ t)− pij(t)

h
=

∑
k ̸=i

pik(h)

h
pkj(t) +

(
pii(h)− 1

h

)
pij(t).

Now if we take the limit h → 0 and interchange the limit and summation operations (if the state
space is finite, this interchange is justified clearly, if the state space is countable, this interchange
is again justified if we assume that supi qi < ∞, that is if we have uniformly bounded jump rates),
we have

lim
h→0

pij(h+ t)− pij(t)

h
=

∑
k ̸=i

[
lim
h→0

pik(h)

h

]
pkj(t) +

[
lim
h→0

pii(h)− 1

h

]
pij(t),
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or

p′ij(t) =
∑
k ̸=i

qikpkj(t) + qipij(t), (5.10)

which is another form of the Chapman–Kolmogorov (backward) equation: in matrix notation, we
have P ′(t) = QP (t).

We can also use (5.5) as

pij(t+ h) =
∑
k

pik(t)pkj(h) =
∑
k ̸=i

pik(t)pkj(h) + pij(t)pjj(h).

Again, if we take the limit and interchange it with the summation operation, we get

p′ij(t) =
∑
k ̸=j

pik(t)qkj + qjpij(t), (5.11)

which is the Chapman–Kolmogorov forward equation: in matrix notation, we have P ′(t) = P (t)Q.

Recall that π(t) = π(0)P (t) so that both equations yield

d

dt
π(t) = Qπ(t) = π(t)Q. (5.12)

Discussion 5.2. Here is an alternative definition of continuous-time Markov chains (Ross, 1980).
Consider a stochastic process such that when you enter to state i, the time you spend at state i
before you transition to another state j ̸= i is an exponential random variable with parameter ai
(with mean 1

ai
). The parameter ai only depends on state i and it is independent of other states j’s.

When you leave state i, you immediately transition to another state (to state j with probability pij).
Thus, we have

pii = 0, 0 ≤ pij ≤ 1,∑
j

pij = 1, j ∈ S.

Therefore, a continuous-time Markov chain is a stochastic process such that (i) its transition from
one state to another state of the state space S is as in a discrete-time Markov chain and (ii) the
sojourn time τi is an exponential random variable with some parameter ai. The sojourn times in
different states must be independent exponential random variables.

To see the relationship between pij and pij(t), note that

pij(h) = haipij + o(h),

since pij(h) is the probability that the state of the process changes from i to j in an infinitesimal
interval h. Thus,

qij = lim
h→0

pij(h)

h
= aipij ,



Lecture 5: Queueing Theory II 5-5

Similarly, 1−pii(h) is the probability that the state of the system changes from state i to some other
state in the interval h, so that

1− pii(h) = aih
∑
j

pij + o(h) = aih+ o(h).

Thus,

qi = lim
h→0

1− pii(h)

h
= ai;

Thus, the Q-matrix can also be written as

Q =


−a0 a0p01 · · · a0p0m
a1p10 −a1 · · · a1p1m

...
...

. . .
...

ampm0 ampm1 · · · −am

 . (5.13)

5.3 Birth-and-Death Processes

A birth-and-death process (which we discussed in Lecture 4) is a continuous-time Markov chain
{X(t), t ∈ T} with state space S = {0, 1, 2, . . .} and with rates

qi,i+1 = λi (say), i = 0, 1, . . . ,

qi,i−1 = µi (say), i = 1, 2, . . . ,

qi,j = 0, j ̸= i± 1, j ̸= i, i = 0, 1, . . . ,

qi = (λi + µi), i = 0, 1, . . . , µ0 = 0,

From the Chapman-Kolmogorov forward equations, we get

For i, j = 1, 2, . . . ,

p′i,j(t) = −(λj + µj)pi,j(t) + λj−1pi,j−1(t) + µj+1pi,j+1(t). (5.14)

and

p′i,0(t) = −λ0pi,0(t) + µ1pi,1(t). (5.15)

Set the boundary conditions as

pi,j(0+) = δij , i, j = 0, 1, . . . (5.16)

Let

pj(t) = Pr{X(t) = j}, j = 0, 1, . . . , t > 0.
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and assume that at time t = 0, our initial condition starts at state i. Therefore,

Pj(0) = Pr{X(0) = j} = δij , (5.17)

and
Pj(t) = pij(t),

The forward equations become

P ′
j(t) = −(λj + µj)Pj(t) + λj−1Pj−1(t) + µj+1Pj+1(t), j = 1, 2, . . . , (5.18)

P ′
0(t) = −λ0P0(t) + µ1P1(t). (5.19)

Suppose that all the λi’s and µi’s are nonzero to ensure that the Markov chain is irreducible (single
communicating class). Since we have ergodicity, the following limit

lim
t→∞

pij(t) = pj

exist, and they are independent of the initial state i. Then per (5.18) and (5.19), we obtain

0 = −(λj + µj)pj + λj−1pj−1 + µj+1pj+1, j ≥ 1, (5.20)

0 = −λ0p0 + µ1p1. (5.21)

Finally, one can show by solving the above equations inductively that if
∑∞

k=0 πk < ∞, where

πj =
λ0λ1 · · ·λj−1

µ1µ2 · · ·µj
, j ≥ 1, π0 = 1, (5.22)

then we have
pj =

πj∑
k πk

, j ≥ 0. (5.23)

5.3.1 The M/M/c model

Now let’s revisit our discussion on the M/M/c model. Assume that we have a single queue having
Poisson arrivals with rate λ, and there are 1 < c < ∞ parallel servers, each having an i.i.d.
exponential service time with mean 1

µ . We can capture this model with a suitable birth-and-death
process.

Note that if there are n customers in the system, where n < c, then first n servers are busy and the
time between two consecutive service completions is the minimum of n i.i.d. exponential random
variables with each parameter being µ, where the minimum is exponential with rate nµ. If there
are at least c many customers in the system (that is, n ≥ c) then all c servers are busy and the
time between two consecutive service completions is exponential with rate cµ. Thus, we have a
birth-and-death process with birth rate λ and death rates

µn = nµ, n = 0, 1, 2, . . . , c,
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µn = cµ, n = c+ 1, c+ 2, . . . .

Denote the utilization ρ = λ/(cµ). Assume that steady state exists and that the system is in steady
state. From the previous section, we get for 1 ≤ n ≤ c,

pn =
λλ · · ·λ

(µ)(2µ) · · · (nµ)
p0 =

(λ/µ)n

n!
p0 =

λ

nµ
pn−1, (5.24)

and for n ≥ c, we get

pn =
(λ)(λ) · · · (λ)

[(µ)(2µ) · · · (cµ)][(cµ)(cµ) · · · (cµ)]
p0

=
λn

c! µc cn−cµn−c
p0 =

(λ/µ)n

c! cn−c
p0

=
λ

cµ
pn−1 = ρn−cpc. (5.25)

In a more compact form, for all n ≥ 1, we can write

[min(n, c)]µ pn = λpn−1.

Using the fact that
∑∞

n=0 pn = 1, we have

p−1
0 = 1 +

c−1∑
n=1

(λ/µ)n

n!
+

∞∑
n=c

(λ/µ)n

c! cn−c

=

c−1∑
n=0

(λ/µ)n

n!
+

1

c! c−c

∞∑
n=c

(
λ

cµ

)n

. (5.26)

To guarantee the existence of a steady-state, the series
∑∞

n=c(λ/(cµ))
n must be convergent, which

implies that ρ < 1. Finally we get,

p0 =

[
c−1∑
n=0

(λ/µ)n

n!
+

(λ/µ)c

c! (1− λ/(cµ))

]−1

. (5.27)

Note that we can analyze the M/M/∞ model in a similar fashion.

5.3.2 The M/m/c/c System: Erlang Loss Model

Now consider the M/m/c model with an additional twist: if all the c servers are busy, any arrival
leaves the system without getting a service. Such systems where arrivals are rejected are called a
loss system. This is a birth-and-death process with

λn = λ, µn = nµ, n = 0, 1, 2, . . . , c− 1, and
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λn = 0, µn = cµ, n ≥ c.

We just follow the same analysis as before:

pn =

(
λ
µ

)n

n!
p0, n = 1, . . . , c, (5.28)

pn = 0, n > c, (5.29)

and

p0 =

 c∑
k=0

(
λ
µ

)k

k!


−1

. (5.30)

Thus,

pn =

(
λ
µ

)n

/n!∑c
k=0

(
λ
µ

)k

/k!

, n = 0, 1, 2, . . . , c. (5.31)

The distribution of {pn} is also called truncated Poisson.

5.3.3 Priorities

Discussion 5.3. Which system is more efficient?: (i) n M/M/1 queues with arrival rates λ and
service rates µ, or, (ii) a single M/M/1 queue with arrival rate λn and service rate µn. Pooling
reduces congestion in general, but not always?

Discussion 5.4. Now let’s consider an M/M/1 queue with two types of customers: type 1 and
type 2. Type i customers arrive independently according to a Poisson process with rate λi, i = 1, 2.
For simplicity, let’s assume that the service times of all customers are exponentially distributed
with parameter µ. For stability, we must assume ρ1 + ρ2 < 1, where ρi = λi

µ . Assume that type
1 customers have a strict priority over type 2 customers. That is, if there is an arrival of type 1
customer to the system, and type 2 customer is receiving a service, then we interrupt this service
and we start serving the arriving type 1 customer, where type 2 customer rejoins the queue (it
actually does not matter where exactly this customers rejoins: top of the line, end of the line, etc.)

We first note that type 1 customers can completely neglect type 2 customers. Therefore, the average
number of type 1 customers in the system L1 = ρ1

1−ρ1
, and the average waiting time of type 1

customers is W1 = L1

λ1
by Little’s Law.

Because of the memoryless property, and the fact that the service times are distributed with the
same mean, the (average) total number of customers in the system L = L1 + L2 does not depend
on the priority rule we impose. The crucial assumption we are making here is that the servers are
not idling intentionally, i.e., the server only idles when the system is completely empty. Therefore,
L = ρ1+ρ2

1−(ρ1+ρ2)
. Therefore, we have L2 = L − L1 = ρ2

(1−ρ1)(1−ρ1−ρ2)
. By Little’s Law again, we can

also find the average waiting time of type 2 customers: W2 = L2

λ2
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