BUSI 573: Stochastic Models in Operations Management Spring 2026

Lecture 6: Queueing Theory III

Lecturer: Sileyman Kerimov Date: February 17, 2026

Disclaimer: These notes are primarily adapted from expositional texts, including work by Jy-
otiprasad Medhi, Karl Sigman, and Jdnos Sztrik. These notes are not meant to be complete or fully
rigorous; some proofs are not given, incomplete, or only outlined, as they are discussed in class.

Discussion 6.1. Continuing our discussion from Lecture 5 on priorities (Discussion 5.4), now
let’s consider a non-preemptive case, where we have an M/M/1 queue with two types of customers,
but now the arrival of a type 1 customer does not disrupt the service of a type 2 customer. After
the server is dome serving a type 2 customer, we start serving type 1 customers if there are any.
Find the average number of customers and average waiting times of both types.

6.1 Jackson Networks

Jackson’s network model is defined as follows. Assume that customers from one node (queueing
system) 4 proceed to an arbitrary node, and new customers may arrive to a node from outside (say
customers arrive to node ¢ according to a Poisson process with rate \;). Suppose that there are k
nodes, where the ith node (i = 1,..., k) consists of ¢; exponential servers with parameter p; (that
is, each node contains a M/M/c queueing system). Customers after receiving service at the ith
node proceed to the jth node with probability p;;.

Customers at node ¢ depart from the system with probability
k
¢ =1- Zpij~
j=1

Consider Jackson’s general network model with k£ nodes. The arrivals can be categorized into two
groups: the external arrivals (with rate A;) and internal arrivals (with rate Z?Zl pjiA;). Therefore,
the effective arrival rate to node 4 (or the effective rate of flow through node 7) is

k
ai:)\i+2pjiaj7 i:1,2,...,k; (61)
j=1

where these equations are also referred as traffic (flow balance, conservation, etc.) equations.
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Figure 5.1 Node 1 in a Jackson Network.

Theorem 6.2 (Jackson’s Theorem). Let (ny,na,...,nk) denote the state of the complete system in
which there are n; (in the queue and in service) at node i in a Jackson network of Markovian queues
in equilibrium, and let p(ny,...,ng) be the probability that the system is in the state (ny,...,ng).

Assume that o
pi = — <1, 1=1,2,...,k,
Hi

where {a;} are given by the balance equations

k
ai:)\i—i—Zajpji, 1=1,2,...,k. (62)
J=1

If p;(n) denotes the probability that there are n customers in the system (in queue plus service) for
the M/M/c; queue with input rate «; and service rate u; for each of the c; servers, i.e.,

(i)

pi(n) = p;(0) —, n=0,1,2,...,¢, (6.3)
n!
<ai>n
Hi o
¢l et
then we have
p(ni,ne,...,ng) = p1(n1) p2(n2) -+ pr(ng). (6.5)

Proof Sketch. Let pi(ni,...,ng) be the probability that the complete system is in state (ng,...,ng)
at time t.
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Let
n;, ifn <c,
ci, ifn>c,

J

g =1~ me ai(n) = min{n;, ¢;} = {

1, Uz 2 1,

0; = min{n;,1} = {0 n— 0

Our goal is to write the differential equations satisfied by p;. Therefore, we will consider the state
changes in an infinitesimal interval (¢,¢ + h) following the interval (0,t). p;. Consider the following
four mutually exclusive ways to move from ¢ to ¢t + h:

(A) State at t is (nq,...,n,) and there are no arrivals or departures occur to or from any node
externally. We get

Pr(4) =pi(n, ..., ) [1 - (Z Ai) h=> " ai(ni)uih| + o(h). (6.6)
(B) State at t is (n1,...,n; +1,...,ny) and there is one service completion at ¢ in (¢,t + h), and
this completion departs from the system (with probability ¢;). We get
k
Pr(B) = pe(nn. . mi + L) as(ns + i b+ ofh). (6.7)
i=1
(C) State at t is (n1,...,m; —1,...,ng) and there is one arrival from the external source to node i
in the interval (¢,t 4+ h). We get
k
Pr(C) =Y pi(ny,...,n; — 1,...,nx) [\ihdi] + o(h). (6.8)
i=1
(D) State at ¢ is (n1,...,n; +1,...,n; —1,...,ny): there is one service completion at node ¢ in

(t,t + h), and the one whose service is completed moves to node j with probability p;;. Thus,

Pr(D) = ZZpt(nl, i1 my =1 ) [ag(ni + D pshpig) + o(h). (6.9)

%

Merging all cases, we have
Pryn(ni,...,n;) = Pr(A) + Pr(B) 4+ Pr(C) + Pr(D). (6.10)

(6.10) can be written as
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pien(ny,...,n;) — Pr(A) = Pr(B) 4+ Pr(C) + Pr(D).

(6.11)

prrn(na, o) — pe(na, ..o n) [1 - (Z Ai) h— Zai(ni)mhl —o(h) = Pr(B) + Pr(C) + Pr(D).
Z l (6.12)

Taking the limit as h — 0 and solving for p’(t) = 0 gives the equations satisfied by steady-state
probabilities:

lZAi + Zai(ni)ﬂi] p(ni,....nk) = Zai(ni + Dpigip(na, ... ,ng + 1,00 ny)
+Z)\152p(nlavn1 - L“’;nk)

i
+Zzal(nl+1):utp1jp(nlv7n1+17an_1_177nk)
i

Finally, one can show that (6.5)) uniquely satisfies the equations above.

6.2 The M/G/1 Model

Now assume that we have a Poisson arrival process with rate A, the service times are i.i.d. and
follow a general distribution with mean E[S] = %, and there is a single server. Again, for stability,

we assume that p = % <1

Let R be the residual service time and let Py denote the probability that there are k customers in
the system in the steady-state. By PASTA property, we have

M

W, (E(R) + (k= 1)E(S)) Py

=~
Il
—

o

B(R)P. + (fj(k - 1)&) B(S)

1 k=1
= E(R)p+ L,E(S).

E
I

where the equation follows since 1 — p = Py. By Little’s Law, we get
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PE[R]
= — 1
W=t (613)
which is known as the Pollaczek-Khintchine mean value formula. So now we have to characterize
E[R].

" _ E[S?]
Proposition 6.3. We have E[R] = .

There are various ways to prove this, but the most pedagogical one is via renewal reward theorem
(see the next section). From Proposition we have

E(S?)  Var(S) + E[S]?
2EB(S) 2E(95)

. % (C% +1) B(S), (2.33)

where C% is the squared coefficient of the service time S. From here, we get

Thus for the mean waiting time we have

_ PE(R) p

W, = C%+1) E(S).
= Top " aop (GHNEE)
And by Little’s law, we get
2 2
1
L= Gt
1—p 2

Discussion 6.4. Kingman’s G/G/N formula:

W i ‘ p\/2(N+1)—1 . 01244_0% +l
TuN o 1-p 2 w

Discussion 6.5. Matching queues, and the relationship between regret and queue-lengths.

6.3 The Renewal Reward Theorem

Definition 6.6. A random point process 1 = {t,} for which the (non-negative) interarrival times
Xp =ty —tn_1,n>1, form an i.i.d. sequence is called a renewal process.

Following the definition, ¢, is called the nth renewal epoch and F(z) := P(X < ), x > 0, denotes
the common inter-arrival time distribution. ¢, = X7 +---+ X,,, and N(t) = max{n : t,, <t} is the
counting process. The rate of the renewal process is denoted by A = 1/E[X].

Theorem 6.7 (Elementary renewal theorem). For a renewal process,

lim M = a.s.
t—oo
and EIN(¢
lim M = \.

t—00 t
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Proof. We start with the first statement. Note that ¢, = X7 +--- 4+ X,,, n > 1. Consider the time
N < E<tn@)+is (6.14)

Then we have
N(t) N(t)+1

tvey = Y Xi, EN@)+1 = Z X,
j=1

which can be written as
WL € < g 2
N(1) 7T N({) T ON(t =

By the strong law of large numbers, the left and right hand sides converge to E(X) as t — oo
almost surely. One can prove the second part via Wald’s identity (which you will prove in your
homework with some provided hints).

Now let R(t) = ZN(t) R; be the total amount of reward collected by time ¢, where N(t) is the
counting process for the renewal process. We want to calculate our long-run reward rate

lim @

t—oo ¢
Theorem 6.8 (Renewal reward theorem). For a positive recurrent renewal process in which a
reward R; is earned during cycle length X; and such that {(X;, R;) : j > 1} is i.i.d. with E[|R;|] <
00, the long run rate at which rewards are earned is given by

R(t ER
lim B = E[R] = ME[R] a.s., (6.15)

t—oo []

E
where (X, R) denotes a typical “cycle” (X;, R;); A = {E[X]} ™! is the arrival rate for the renewal

process.
Moreover,
E[R(t)] _ E[R]

A= S Exy (6.16)

Discussion 6.9. Now let’s prove Proposition 6.3 via the renewal reward theorem. Consider a
renewal point process {t, : n > 1} with i.i.d. interarrival times X, = t,, — t,—1, n > 1. Define

A(t) = tnwy+1 — t, t>0. (6.17)

A(t) is called the excess at time t, or remaining lifetime. If t,,_1 <t < t,, then

Alt) =t, —t < X,,.
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Note that if {t,} is a Poisson process at rate X\, then by the memoryless property we have A(t) ~
exp(A), t > 0. But for a general renewal process (as in residual service time in M/G/1 queue), we
need to be smarter. We want to show that

I E[X?]
lim - [ A =
Am g | Al ds = Sprs

Note that we can view the i.i.d. X; as cycle lengths (service times), and r(t) = A(t) as the generated
reward rate at time t. Let Ry be the generated reward in the first cycle. Then we have

X1 X1 X2
R, = A(s)dSZ/ (X; —s)ds = —-.
0 0

Since {(X;, R;)}’s are i.i.d., by the renewal reward theorem, we almost surely have

1t _ E[R] E[X?]
Am g | Al ds = g = Ry

Discussion 6.10 (Inspection paradox). Let S(t) =ty ()41 — tn() be the length of the interarrival
time covering time t. If t;_1 < t < t;, then we have S(t) = X,;. Define the reward rate as
r(t) = S(t). Then we get

tj tj tj
tj—1 tj-1 tj—1

By the renewal reward theorem, we have almost surely that

1 _ E[R] E[X?
Am g | SW)ds = g = X

where the fact that %[);2]] > E[X] yields the inspection paradoz.
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