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Abstract

In numerous online selection problems, decision-makers (DMs) must allocate on the fly lim-

ited resources to customers with uncertain values. The DM faces the tension between allocating

resources to currently observed values and saving them for potentially better, unobserved val-

ues in the future. Addressing this tension becomes more demanding if an uncertain disruption

occurs while serving customers. Without any disruption, the DM gets access to the capacity in-

formation to serve customers throughout the time horizon. However, with uncertain disruption,

the DM must act more cautiously due to risk of running out of capacity abruptly or misusing

the resources. Motivated by this tension, we introduce the Online Selection with Uncertain Dis-

ruption (OS-UD) problem. In OS-UD, a DM sequentially observes n non-negative values drawn

from a common distribution and must commit to select or reject each value in real time, without

revisiting past values. The disruption is modeled as a Bernoulli random variable with probabil-

ity p each time DM selects a value. We aim to design an online algorithm that maximizes the

expected sum of selected values before a disruption occurs, if any.

We evaluate online algorithms using the competitive ratio—the ratio between the expected

value achieved by the algorithm and that of an optimal clairvoyant algorithm that knows all

value realizations in advance but still faces uncertain disruption. Using a quantile-based ap-

proach, we devise a non-adaptive single-threshold algorithm that attains a competitive ratio

of at least 1 − 1/e, and an adaptive threshold algorithm characterized by a sequence of non-

increasing thresholds that attains an asymptotic competitive ratio of at least 0.745. Both of

these results are worst-case optimal within their corresponding class of algorithms. Our results

reveal an interesting connection between the OS-UD problem and the i.i.d. prophet inequality

problems as the number of customers grows large.

1 Introduction

Online selection models have gained increasing attention, as they capture key features of extensive

applications such as online advertising (Mehta and Panigrahi (2012)), online resource allocation

(Delong et al. (2024)), and applicant evaluation (Epstein and Ma (2024)). Generally speaking,

in these problems, a decision-maker (DM) must irrevocably allocate limited resources to incoming

customers with uncertain values. The DM faces a fundamental tension between allocating resources

to currently observed values and saving them for potentially better, unobserved values in the future.

Alleviating this tension becomes more challenging if committing to a request may cause a

disruption, potentially halting the remaining process. For example, in cloud computing, providers
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such as Amazon Web Services and Azure often offer spot instances at lower prices than on-demand

instances by utilizing under-utilized resources. While these providers aim to maximize resource

utilization and generate additional revenue through the low-price spot instances, they must also

manage the risk of negatively impacting the computational performance of on-demand users entitled

to those resources. If the provider’s decision affects the primary user entitled to those computational

resources, then, as a result, the provider must withhold from using these resources until they are

available again (e.g., see Cohen et al. (2019); Perez-Salazar et al. (2022)). In a similar vein, an

owner of a reusable resource (e.g., a host renting her property on AirBnB, or a driver accepting a

ride on Uber) might experience a disruption in operations due to property damage caused by the

customer. In general, this additional uncertainty forces the DM to act more cautiously due to risk

of misusing the resources. Motivated by this, we introduce the Online Selection with Uncertain

Disruption (OS-UD) problem, which captures such disruptions when serving incoming requests.

In the OS-UD problem, a finite sequence of n independent and identically distributed (i.i.d.)

non-negative random variables arrive sequentially. Upon observing a value, the DM must decide

whether to (i) select it, or, (ii) reject it and observe the next value, if any, without the possibility

of reconsidering past observations. However, with a known probability p ∈ [0, 1], selecting a value

disrupts the process, forfeiting this last selection, and halting the remaining process permanently.

Our objective is to design an online algorithm that maximizes the expected sum of selected

values before a disruption occurs, if any. We evaluate the performance of algorithms using the

competitive ratio, which is the fraction between the value of an algorithm and the value of an

optimal clairvoyant algorithm that knows the values upfront, but still faces unknown disruptions.

The competitive ratio is a number in the interval [0, 1] that measures the “price” paid by the DM for

not knowing all the sequence of values upfront. Our definition of competitive ratio differs slightly

from the usual definition found in other online selection problems (e.g., see (Correa et al., 2021; Hill

and Kertz, 1982; Krengel and Sucheston, 1977; Mehta and Panigrahi, 2012))—a formal description

of our problem and discussion is presented in §1.1. Our goal is to shed light on the following

questions: (i) What is the optimal (worst-case) competitive ratio for the OS-UD problem? (ii)

How should a DM accept incoming requests to achieve the optimal competitive ratio?

In general, without imposing any structure on the disruption process, any online algorithm

can perform arbitrarily bad and the optimal competitive ratio can be 0 (see Example 7.1). In

this paper, we answer both questions by devising simple threshold policies, and we provide an

exhaustive analysis for the case when the probability of disruption p is a fixed constant. We first

show that the optimal online algorithm induced by a stochastic dynamic program is characterized

by a sequence of non-increasing thresholds, where the algorithm accepts the incoming request if

and only if its value is at least the current threshold. Motivated by this, in order to quantify

the “price” that the DM must pay due uncertainties, we analyze two classes of algorithms that

are easy-to-describe: non-adaptive (fixed) threshold algorithms and adaptive threshold algorithms.

Such algorithms are also desirable in practice, as they are simple-to-implement, have economic

interpretations (Arnosti and Ma, 2023; Naor, 1969; Van Mieghem, 1995) and are widely used in
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posted price mechanisms (Chawla et al., 2007, 2010, 2024; Correa et al., 2019).

For non-adaptive threshold algorithms, we offer a complete characterization of the optimal

competitive ratio, which is 1 − 1/e, through the design of an algorithm and a hard instance. For

adaptive threshold algorithms, we present an algorithm that employs a non-increasing sequence

of thresholds with a tight asymptotic competitive ratio of θ∗ ≈ 0.745, where θ∗ is a parameter

appearing in the Hill and Kertz equation (Hill and Kertz, 1982; Kertz, 1986). Interestingly, θ∗

coincides with the optimal competitive ratio of the i.i.d. prophet inequality problem (Correa et al.,

2021; Hill and Kertz, 1982; Kertz, 1986).

The techniques derived for the fixed disruption probability case can also be adapted to the

case when disruption is rare (where p = α/n, for α < 1). Notably, one can obtain asymptotic

competitive ratios that are strictly larger than θ∗ (see §6). After presenting the formal introduction

of our problem in the next subsection, we provide the details of our results and techniques in §1.2.

1.1 Problem Formulation

Given a fixed disruption probability p ∈ [0, 1], an instance I of the OS-UD problem is given

by a pair (n, F ), where n ≥ 1 is the number of values, and F is a continuous and increasing

cumulative distribution function supported in the non-negative real numbers.1 Let F be the set of

all such cumulative distribution functions. An instance I = (n, F ) encodes two sequences of random

variables (Xi)
n
i=1 and (Yi)

n
i=1. The Xi’s are non-negative and i.i.d. following the distribution F .

The Yi’s are are i.i.d. 0/1-random variables with Pr(Yi = 1) = p ∈ [0, 1]. The DM observes Xi’s in

the fixed order 1, . . . , n, sequentially. Upon observing Xi, the DM can either skip to the next value

(if one remains) or select the current one. If the DM selects Xi, DM then observes Yi indicating

whether making this selection will disrupt the whole process. If Yi = 1, we say that a disruption

occurred and the process terminates. In this case, the DM receives the sum of selected values

excluding Xi. If Yi = 0, the process continues, and the DM receives Xi as part of the current

round’s value. We aim to find an online algorithm ALG that maximizes the total expected value

collected. We denote by v(ALG(I)) the expected value obtained by algorithm ALG for an instance I.

We pursue a competitive analysis, where we compare the value of an algorithm to an optimal

clairvoyant algorithm that has access to the value realizations X1, . . . , Xn, in advance, but not

to the sequence Y1, . . . , Yn. The clairvoyant can choose in which order to observe the Xi’s, say

Xσ(1), . . . , Xσ(n), where σ is a permutation of [n]. Thus, the optimal clairvoyant algorithm obtains a

value of v(OPT(I)) = E
[
maxσ

∑min{D−1,n}
i=1 Xσ(i)

]
= E

[∑min{D−1,n}
i=1 X(i)

]
, where D is a geometric

random variable with parameter p,2 and X(j) denotes the jth largest order statistic. We abuse

notation and simply write ALG and OPT for ALG(I) and OPT(I), respectively, when the instance I is

clear from the context. For convenience, we will omit the word “online” when referring to online

algorithms when the context is clear. Then, given an algorithm ALG with a disruption probability

1We can assume that F is continuous and smooth by perturbing the observed values with a small continuous
noise. The monotonicity assumption is less common, but follows a similar principle of perturbing the original F (e.g.,
see (Liu et al., 2020; Perez-Salazar and Verdugo, 2024)).

2That is, Pr(D = j) = p(1− p)j−1 for j ≥ 1.
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p, its competitive ratio is infn≥1,F∈F v(ALG)/v(OPT), and we seek an algorithm with the largest

competitive ratio possible. In the remainder of the paper, we focus on the case when p ∈ (0, 1),

since when p ∈ {0, 1}, any optimal algorithm obtains the same value as the optimal clairvoyant

algorithm.

We remark that the clairvoyant algorithm is different from the offline algorithm that knows

the realizations of Xi’s and Yi’s upfront for all. The following example motivates us to use a more

refined benchmark for our online algorithms, since it is impossible to obtain a constant competitive

ratio when we attempt to replace OPT by the offline algorithm.

Example 1.1. Consider the following n ≥ 1 i.i.d. values X1, . . . , Xn, where Xi’s are uniformly

distributed in [0, n]. Fix p ∈ (0, 1). Note that the offline algorithm will select all the values

for which Yi = 0. Thus, the expected value obtained by the offline algorithm is v(OPTOffline) :=

E[number of i’s with Yi = 0] · E[X1] = (1 − p)n2/2. On the other hand, we have v(OPT) ≤ n/p.

Then, v(ALG)/v(OPTOffline) ≤ v(OPT)/v(OPTOffline) ≤ 2/(p(1 − p)n), for any algorithm ALG. This

shows that, for any fixed p ∈ (0, 1), no constant competitive ratio is possible when we compare

v(ALG) against the value of the offline algorithm that knows all the information in advance.

Note that one can formulate the DM’s problem as a stochastic dynamic program (see §3).
However, analyzing competitive ratios is not straightforward as we are comparing two algorithms

that operate with asymmetric information. Nevertheless, the dynamic program reveals a nice

structural property that we will leverage in our analysis. Indeed, given an instance I = (n, F ) of

the OS-UD problem, there exists an optimal algorithm that employs thresholds τ1 ≥ · · · ≥ τn such

that if the ith observed value Xi is at least τi, then the algorithm selects it (see Proposition 3.1).

This motivates us to focus on the two extremes for this class of threshold-based algorithms: (1)

NA, which is the class of non-adaptive algorithms, where τ1 = · · · = τn; and (2) AD, which is

the class of adaptive algorithms, where we do not constrain the thresholds to be the same, but

the thresholds must be non-increasing, i.e., τ1 ≥ · · · ≥ τn. For a fixed p ∈ (0, 1) and a class of

algorithms C ∈ {NA,AD}, we define the competitive ratio for instances of length n in class C via:

γCn,p := sup
ALG in C

inf
F∈F

v(ALG(n, F ))

v(OPT(n, F ))
.

Given that C is a class of threshold-based algorithms, we can exchange the supremum with the

infimum in the definition of γCn,p without altering its value. Thus, the largest competitive ratio of

any algorithm in class C for the OS-UD problem can be written as follows:

γCp := sup
ALG in C

inf
n≥1,F∈F

v(ALG)

v(OPT)
= inf

n≥1
γCn,p.

1.2 Our Technical Contributions

Our first result provides a tight performance bound for the non-adaptive threshold algorithms.

Theorem 1.1. For any p ∈ (0, 1), we have γNA
p = 1− 1/e.
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To prove Theorem 1.1, we explicitly construct a fixed threshold algorithm with a competitive ra-

tio of at least 1−1/e, through focusing on a subclass of NA, the quantile-based threshold algorithms.

Algorithms in this subclass are parametrized by q ∈ [0, 1], which we refer as the quantile of the

algorithm. An algorithm with a quantile q computes a threshold τ via q = Pr(X ≥ τ) = 1− F (τ),

and selects any value in the input sequence that is at least τ .

To prove that the competitive ratio of an algorithm ALG is at least θ, one can use standard

stochastic dominance arguments, and it is sufficient to show that Pr[ALG obtains value of at least τ ]

is at least θ ·Pr[OPT obtains value of at least τ ] for any τ ≥ 0. However, due to possibility of making

multiple selections, analyzing both of these quantities is not evident. Instead, we characterize the

optimal values for both the clairvoyant and the quantile-based threshold algorithms as integrals

of the inverse of F . From here, we can deduce a lower bound for γNA
n,p that only depends on n

and p, and not dependent on F . This lower bound turns out to be monotonically decreasing in n

and converging to 1 − 1/e providing the desired lower bound on γNA
p . To prove an upper bound

on γNA
p , we explicitly construct an instance (n, F ) such that γNA

n,p ≤ 1 − 1/e + o(1), and since

γNA
p = infn≥1 γ

NA
n,p , the result follows. We provide all the details for the proof in §4.

We then turn our attention to the performance of the general class of adaptive threshold al-

gorithms, and we show that adaptivity is key. Our second result shows that a competitive ratio

better than 1− 1/e is possible for such algorithms.

Theorem 1.2. For any p ∈ (0, 1), lim infn→∞ γAD
n,p ≥ θ∗ ≈ 0.745, where β = 1/θ∗ is the unique

solution to the integral equation
∫ 1
0 (y − y ln y + (β − 1))−1 dy = 1.

Theorem 1.2 shows that there is a strict separation between acting adaptive and non-adaptive.

In order to prove this result, we provide a quantile-based algorithm similar to Correa et al. (2021)

and Perez-Salazar et al. (2025). For each observed value i, we sample a quantile qi from an

appropriate distribution, and we compute the threshold τi such that Pr(X ≥ τi) = 1− F (τi) = qi.

The algorithm then selects i if the observed value Xi is at least τi. By an appropriate choice of

distribution for the quantiles, we show that the value of the algorithm is asymptotically a fraction

θ∗ ≈ 0.745 of v(OPT). We present the algorithm and its analysis in §5.
Our final result establishes a limit on the competitive ratio attainable by any algorithm for the

OS-UD problem, contributing another piece to the puzzle of answering our first research question.

Theorem 1.3. For any p ∈ (0, 1), we have γAD
p ≤ θ∗, where θ∗ is defined in Theorem 1.2.

We derive the upper bound by adapting the worst-case instance for the i.i.d. prophet inequality

problem from (Hill and Kertz, 1982; Liu et al., 2020) to OS-UD. We present the details in §5.

2 Related Work

Online selection, as well as the tension between collecting short-term values and saving resources

for long-term values, have been extensively studied in computer science and operations research

literature through the lens of optimal stopping theory (e.g., see Hill and Kertz (1992); Krengel and
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Sucheston (1977); Shiryaev (2007)), and for their broad applicability on various practical problems

from crowd-sourcing (Mehta and Panigrahi, 2012) to capital investment problem (Goyal and Ravi,

2010). Here, we present several streams of literature that are closely related to our work.

Prophet Inequality. One related stream of literature to our work is the prophet inequality

problem (e.g., see Krengel and Sucheston (1977); Samuel-Cahn (1984)), in particular, the case

with i.i.d. values. In the i.i.d. prophet inequality problem (Hill and Kertz, 1982), a DM must

select at most one value from a sequence of i.i.d. randomly generated values, and her goal is to

design an algorithm with a large competitive ratio, where the offline benchmark is the expected

maximum of the sequence of values. It is known that the optimal competitive ratio for the i.i.d.

prophet inequality problem is θ∗ ≈ 0.745, which is the unique parameter appearing in the Hill &

Kertz equation (Correa et al., 2021; Hill and Kertz, 1982; Kertz, 1986). This optimal algorithm

can be attained by a quantile-based algorithm that depends solely on n and is independent of the

specific instance distribution. To facilitate the analysis of the algorithm, the competitive ratio

can be retrieved through a unique solution of the Hill and Kertz equation. Similar techniques to

using ODEs have also been explored in various recent work (Correa et al., 2021; Liu et al., 2020).

By generalizing the Hill and Kertz equation, Brustle et al. (2025) introduces a novel non-linear

system of differential equations and provide tight analysis for the k-prophet inequality problem.

Our paper extends the single-selection prophet setting by incorporating an additional disruption

indicator, and we use a similar quantile-based approach to develop an adaptive threshold algorithm,

which achieves an asymptotic competitive ratio of θ∗ as well.

Random horizon. There is large body of work in optimal stopping problems with random hori-

zon (Hajiaghayi et al., 2007; Zhang and Jaillet, 2023). Here, the disruption is caused by not knowing

the length n of values upfront. For example, the uncertain horizon setting has been extensively

studied within the framework of the secretary problem. When no distributional information is avail-

able regarding the disruption time—beyond which no further applicants can be picked—it is known

that no algorithm can achieve a constant competitive ratio (Hill and Krengel, 1991). However, if a

random termination time with a known value-independent distribution exists, a conditionally op-

timal selection rule can be formulated (Samuel-Cahn, 1996). In our case, the disruption is caused

potentially by selecting a value, and in principle we could observe the whole sequence of n values.

Closer to our work is Alijani et al. (2020), which studies the prophet inequality problem with supply

uncertainty. Even though the OS-UD problem has applications in settings with supply uncertainty,

our main focus is in applications where serving a request can disrupt the remaining selection pro-

cess. In a similar vein, our model is loosely related to the stochastic knapsack problems (Dean et al.,

2008; Ma, 2018), where items have unknown stochastic sizes, items are packed sequentially, and if

the knapsack is overflowed, then the whole process stops. We could regard the OS-UD problem as

a knapsack problem, where we have a knapsack of capacity 1, and each item has two possible sizes:

size 1/n with probability 1 − p and size 1 + 1/n with probability p. Nevertheless, the knapsack

literature mostly deals with approximation algorithms as opposed to competitive analysis that we

pursue in this work.
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Dynamic matching and online resource allocation. The tension between committing to a

decision now and delaying decisions in anticipation of better opportunities arises as an inherent

trade-off in many stochastic models. In the context of dynamic matching and online resource allo-

cation, recent work addressed this trade-off through the lens of an all-time regret notion (Gupta,

2024; He et al., 2025; Kerimov et al., 2024; Wei et al., 2023) and approximation algorithms (Aouad

and Saritaç, 2020). In particular, the all-time regret notion implicitly deals with uncertain disrup-

tion by guaranteeing near-optimal performance throughout the time horizon. Our work studies the

same trade-off in the context of online selection by explicitly introducing a disruption indicator, and

while there are differences across these stochastic models, we hope that the modeling we propose

in this work can be leveraged to study this fundamental tension under disruptions such as match

rejections and item returns.

3 Preliminaries

In this section, we present some preliminaries needed in the remaining of the paper. All missing

proofs in the main body are deferred to the end of the paper. The value maximization problem faced

by the DM can be solved by means of stochastic dynamic programming. For any n ≥ 1, disruption

parameter p ∈ (0, 1), and distribution F ∈ F , let Di(p, F ) be the optimal value obtainable from

the sequence (Xj)
n
j=i, when i− 1 ≤ n values have been observed already (i.e., the ith value is ready

to be observed next) and no disruption has occurred yet. Then clearly Dn+1(p, F ) = 0, and for

i ≤ n, we have

Di(p, F ) = max
τi≥0

{(1− p) Pr[X ≥ τi] (E[X|X ≥ τi] +Di+1(p, F )) + Pr[X < τi]Di+1(p, F )} . (DP)

By solving the recursion (DP), we can obtain an optimal algorithm that at time i ∈ [n], selects

the observed value Xi if it is at least τi, where τi is the maximizer of (DP). The next proposition

states that it is optimal to use a non-increasing sequence of thresholds, i.e., τ1 ≥ · · · ≥ τn.

Proposition 3.1. There exists an optimal algorithm for the OS-UD problem that employs a non-

increasing sequence of thresholds.

Next, we provide two characterizations of v(OPT) in terms of the inverse of F and its derivative.

These characterizations will be useful in the analysis of NA and AD classes.

Proposition 3.2. The value achieved by the optimal algorithm can be characterized as follows:

v(OPT) =

∫ 1

0
Bn(p, v)r(v)dv =

∫ 1

0
F−1(1− q)gn(p, q)dq, (1)

where Bn(p, v) := E[min{X,D − 1, n}] with X ∼ Bin(n, v), r(v) > 0 is a function such that∫ 1
u r(v)dv = F−1(1− u),3 and gn(p, q) := (1− p) · n(1− pq)n−1.

3The existence of r(v) is guaranteed by our assumption of F−1 being differentiable and strictly decreasing.
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Finally, we reproduce the ordinary differential equation (ODE) system introduced by Hill and

Kertz (1982), colloquially known as the Hill and Kertz equation. This will be used in the analysis

of the AD class. We want to find a solution y : [0, 1] → [0, 1] to the following ODE:

y′(t) = y(t)(ln(y(t))− 1)−
(

1

θ∗
− 1

)
,

y(0) = 1, lim
t↑1

y(t) = 0.

This system has a solution if and only if θ∗ ≈ 0.745, where θ∗ the unique solution to the integral

equation in Theorem 1.2.

4 The Class of Non-Adaptive Algorithms

In this section, we analyze the performance of non-adaptive threshold algorithms. We fully charac-

terize the competitive ratio achievable by this class, presenting an optimal algorithm that guarantees

a competitive ratio of at least 1 − 1/e for any input to the OS-UD problem. Moreover, we show

that no non-adaptive algorithm can achieve a competitive ratio exceeding 1 − 1/e + o(1) in the

worst case. Together, these results imply Theorem 1.1.

4.1 Quantile-Based Non-Adaptive Algorithm

Our algorithm is quantile-based. It receives a quantile q ∈ [0, 1], sets the threshold τ = F−1(1− q),

and selects any value of at least τ . For any n ≥ 1, we denote the algorithm with quantile qn by

ALGqn and its expected value by v(ALGqn). The main result of this section is the following:

Theorem 4.1. For any n ≥ 1, if qn = min{1, 1/pn}, we have v(ALGqn )
v(OPT) ≥ 1− 1

e .

Theorem 4.1 immediately implies γNA
p ≥ 1− 1/e, proving the first part of Theorem 1.1. The proof

relies on two key lemmas. The first lemma provides a lower bound on v(ALGqn)/v(OPT) that is

independent of F .

Lemma 4.2. For any n ≥ 1 and p ∈ (0, 1), we have

v(ALGqn)

v(OPT)
≥ (1− (1− qnp)

n)

p
·min

{
p

1− (1− p)n
,

1

qnn

}
, (2)

for any instance of the OS-UD problem.

Let ηqnn,p denote the right-hand side of (2). The next lemma provides a useful monotonicity property.

Lemma 4.3. For any n ≥ 1, let qn = min{1, 1/pn}. Then, we have ηqnn,p ≥ η
qn+1

n+1,p. Furthermore,

limn→∞ ηqnn,p = 1− 1/e.

With these two lemmas, we are ready to provide the proof of Theorem 4.1. Indeed, for any k ≥ 1,

we obtain v(ALGqn)/v(OPT) ≥ ηqnn,p ≥ η
qn+k

n+k,p, where the first inequality simply follows from Lemma
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4.2, and the second inequality follows from applying the monotonicity in Lemma 4.3 iteratively k

times. Thus, we obtain v(ALGqn)/v(OPT) ≥ limk→∞ η
qn+k

n+k,p = 1− 1/e for any n ≥ 1. We use the rest

of this subsection providing the proofs of Lemma 4.2 and 4.3.

Proof of Lemma 4.2. Fix n ≥ 1, and we drop the index n from quantile for simplicity. We start

characterizing v(ALGq) as follows:

v(ALGq) =
n∑

a=1

Pr[Bin(n, q) = a]

(
a∑

i=1

p · (1− p)i−1 · (i− 1) + a · (1− p)a

)
· E[X|X ≥ τ ]

= An(q, p)

∫∞
τ x · f(x)dx
Pr[X ≥ τ ]

= An(q, p)

∫ q
0 F−1(1− u)du

q
= An(q, p)

∫ 1
0 r(v)min{v, q}dv

q
, (3)

where the second equality uses An(q, p) = (1 − p) · (1− (1− qp)n) /p, which is a simplification

from preceding expression; the third equality uses the assumption that F is strictly increasing and

substitutes F (x) by 1 − u, and the last equality is achieved by setting F−1(1 − u) =
∫ 1
u r(v)dv,

which is valid by our assumption on F . Then, per Proposition 3.2, we have

v(ALGq)

v(OPT)
=

(An(q, p)/q)
∫ 1
0 r(v)min{v, q}dv∫ 1

0 Bn(p, v)r(v)dv
≥ inf

v∈[0,1]

An(q, p) ·min{v, q}
Bn(p, v) · q

. (4)

For v ≥ q, the ratio inside the infimum becomes An(p, q)/Bn(p, v) which is a decreasing function

in v. For v < q, the ratio now becomes

An(q, p) · v
Bn(p, v) · q

=
An(q, p)

q

v∑n
i=2 p · (1− p)i−1

∑i−1
j=1 Pr[Bin(n, v) ≥ j] + (1− p)n · nv

. (5)

In Lemma 8.1, we show that (5) is non-decreasing in v. This implies that the infimum is attained

either when v → 0 or v → 1. Thus,

v(ALGq)

v(OPT)
≥ min

{
lim
v→0

An(q, p)v

Bn(p, q)q
, lim
v→1

An(p, q)

Bn(p, q)

}
=

(1− p)(1− (1− qp)n)

p
·min

{
1

E[min{D − 1, n}]
,

1

(1− p)qn

}
,

where the second line follows by a straightforward calculation of the corresponding limits. Here

D ∼ Geom(p), and a direct calculation shows that E[min{D−1, n}] = (1−p)(1− (1−p)n)/p. This

concludes the proof.

Proof of Lemma 4.3. We analyze three cases: (i) pn < p(n + 1) < 1; (ii) pn ≤ 1 < p(n + 1); and

(iii) 1 < pn < p(n+ 1).

Case (i). Here, we have qn = qn+1 = 1. Then, η1n,p = min
{
1, 1−(1−p)n

pn

}
= 1−(1−p)n

pn , where the

first equality follows simply by definition, while the second equality follows from the Bernoulli’s

inequality (1− p)n ≥ 1− pn. From here, it is immediate that η1n+1,p ≤ η1n,p.
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Case (ii). Here, we have qn = 1 and qn+1 = 1/p(n+ 1). Then, ηqnn,p =
1−(1−p)n

pn , and

η
qn+1

n+1,p =

(
1−

(
1− 1

n+ 1

)n+1
)
min

{
1,

1

1− (1− p)n+1

}
= 1−

(
1− 1

n+ 1

)n+1

with calculations analogous to the previous case. Note that the function (1 − (1 − p)n)/p =∑n−1
ℓ=0 (1− p)ℓ is decreasing in p. Thus, we have p ∈ [1/(n+ 1), 1/n], and

ηqnn,p ≥ 1−
(
1− 1

n

)n

≥ 1−
(
1− 1

n+ 1

)n+1

= η
qn+1

n+1,p.

Case (iii). In this case, we have qn = 1/pn and qn+1 = 1/p(n + 1). Thus, ηqnn,p = 1 −
(
1− 1

n

)n
and η

qn+1

n+1,p = 1 −
(
1− 1

n+1

)n+1
. As a byproduct of the analysis from the previous case, we have

already proved ηqnn,p ≥ η
qn+1

n+1,p. To conclude, for n > 1/p we have qn = 1/pn, and so limn η
qn
n,p =

limn 1−
(
1− 1

n

)n
= 1− 1

e .

4.2 Upper Bound on Competitive Ratio

In this subsection, we prove γNA
p ≤ 1 − 1/e to complete the proof of Theorem 1.1. To do so, we

provide a family of instances with competitive ratios approaching 1− 1/e. For this hard instance,

we define the distribution through its inverse as follows:

F−1(1− u) =
a1
n
δ{0}(u) + a2I(0,β/n](u), (6)

where a1, a2, β ∈ R, β ≤ n,δ{0}(u) denotes the Dirac delta function centered at u = 0. and I is

a characteristic function. Denote by Poisson(β) a Poisson distribution with parameter β. We use

the following two lemmas to characterize the value of the optimal algorithm and the value of the

single threshold algorithm.

Lemma 4.4. When n → ∞, v(OPT) → a1(1− p) + a2
∑∞

j=1 Pr[Poisson(β) ≥ j](1− p)j.

Lemma 4.5. Let λ = λ∗ > 0 be a solution to the equation

e−λp
(
a1 + a1pλ+ a2pλ

2
)
= a1. (7)

As n grows large, the expected value of ALGλ/n converges to

lim
n→∞

v(ALGλ/n) = max

{
(1− p)a1,

(1− p)(1− e−βp)

βp
(a1 + a2β), C1

}
,

where C1 =
(1−p)(1−e−λ∗p)

λ∗p (a1 + a2λ
∗) if λ∗ ≤ β and C1 = 0 otherwise.

Let f(a1, a2, β, p, λ) := v(ALG
λ
n )/v(OPT). We aim to bound mina1,a2,β,pmaxλ f(a1, a2, β, p, λ),

which will provide an upper bound on the competitive ratio.
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Theorem 4.6. Given any ϵ > 0, for given inputs a1, a2, β, p, λ which satisfy a2 = p(e− 2)a1, and

β sufficiently large, we have v(ALG
λ
n )/v(OPT) ≤ 1− 1/e+ ϵ.

Proof. Given β > 1/p sufficiently large, plugging in a2 = p(e−2)a1 into (7) we obtain the following

e−λ∗p
(
a1 + a1pλ

∗ + p2(e− 2)a1(λ
∗)2
)
= a1, which holds if and only if λ∗ = 1/p for λ∗ > 0. Note

that when λ∗ = 1/p, through direct comparison and monotonicity analysis, we get

C1 ≥ max

{
(1− p)a1,

1− p

βp
(1− e−βp)(a1 + a2β)

}
.

Consequently, for the input parameters a1, a2, β, p, λ satisfying a2 = p(e − 2)a1, and β sufficiently

large, the value λ = 1/p serves as the maximizer of the function f(a1, a2, β, p, λ). Then for any

given ϵ > 0, we have

v(ALG
1
np )

v(OPT)
≤ (1− p) · (1− 1/e) · (a1 + a2/p)

a1(1− p) + a2
∑∞

j=1 Pr[Poisson(β) ≥ j](1− p)j
.

Note that the desired upper bound of 1− 1/e+ ϵ is only achieved when the necessary condition of∑∞
j=1 Pr[Poisson(β) ≥ j](1− p)j−1 ≥ 1/p− ϵ is met. We can find a sufficiently large β that ensures

the validity of the above inequality. The process of finding such a β consists of the following two

steps:

(i) Find an integer C2 such that (1− p)C2 ≤ ϵp/2. C2 could then be set as
⌈
log1−p (ϵp/2)

⌉
.

(ii) Using the integer C2 found in the previous step, we find β∗ ≥ λ such that Pr[Poisson(β∗) ≥
C2] ≥ 1− ϵp/2. The existence of such a β∗ is guaranteed by the intermediate value theorem.

Using conditions (i) and (ii) above, we recover the necessary condition:

∞∑
j=1

Pr[Poisson(β) ≥ j](1− p)j−1 ≥
C2∑
j=1

(
1− ϵp

2

)
(1− p)j−1 =

(
1− ϵp

2

) 1− (1− p)C2

p

≥
(
1− ϵp

2

)(1

p
− ϵ

2

)
=

1

p
− ϵ+

ϵ2p

4
≥ 1

p
− ϵ.

5 The Class of Adaptive Algorithms

In this section, we focus on adaptive algorithms. In §5.1, we formally define our algorithm and

present the proof of Theorem 1.2 to show that adaptivity is key, and one can improve the competitive

ratio from the non-adaptive case in the limit. In §5.2, we present the proof of Theorem 1.3 to provide

an upper bound on the competitive ratio, and we show that our derived asymptotic competitive

ratio is tight.
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5.1 Quantile-Based Threshold Algorithm

For each i = 1, . . . , n, our adaptive algorithm samples a quantile qi ∈ [0, 1] from a density function

with a support in [εi−1, εi], where 0 = ε0 < ε1 < · · · < εn = 1. Then, if the observed value Xi is

at least F−1(1 − qi), the algorithm selects the value; otherwise the value is rejected. Denote this

algorithm by ALGAD.

The construction of the densities over each interval [εi−1, εi] follows a similar approach to the

one outlined in Correa et al. (2021); Perez-Salazar et al. (2025). We take some time to explain

the importance of these densities and the challenges involved in applying the method from Correa

et al. (2021). From the second characterization of v(OPT) in Proposition 3.2, the function gn(p, q) =

(1−p)n(1−pq)n−1 is the derivative of An(p, q) = E[min{Bin(n, q), D−1}], i.e., the derivative of the
expected number of values OPT gets at quantile q . The goal of our analysis is to show that, for every

q ∈ [0, 1], the derivative of the expected number of values at quantile q that the algorithm accepts

is at least θn · gn(p, q). If this condition holds, then we can guarantee that v(ALGAD) ≥ θn · v(OPT).
This analysis is quite stringent, as it requires specifying a valid density for every q ∈ [0, 1]. However,

the method from Correa et al. (2021) applied to the OS-UD probem only provides a density over

the interval [0, p], leaving (1−p, 1] unassigned. To address this limitation, we use a direct approach

and construct densities that cover completely the interval [0, 1] in such a way that the competitive

ratio of ALGAD converges to θ∗.

We now explain the density functions for ALGAD. Let 0 = ε0 < ε1. For θn > 0, consider

the following function β1,n(p, q) = −θnI[ε0,ε1](q)g
′
n(p, q)/(1 − p). Note that β1,n ≥ 0. If we want

to sample q1 from β1,n(p, ·), then we must have 1 =
∫ 1
0 β1,n(p, q) dq which happens if and only if

1
nθn

= 1 − (1 − pε1)
n−1. From here, ε1 is decreasing in θn; thus, there is θn such that ε1 ≤ 1. In

general, let βi,n(p, q) = −θnI[εi−1,εi](q)g
′
n(p, q)/(1− p) such that the following system is satisfied for

0 = ε1 < ε2 < · · · < εk ≤ 1, and for the largest k possible:∫ 1

0
β1,n(p, q) dq = 1, (8)∫ 1

0
βi+1,n(p, q) dq =

∫ 1

0
βi,n(p, q)(1− pq) dq ∀i < k. (9)

We already know that we can satisfy this system with k = 1. We seek to satisfy this system for

k = n and εn = 1. Then, our densities for ALGAD become βi,n(p, q)/
∫ 1
0 βi,n(p, q) dq for all i ∈ [n].

Lemma 5.1. There is a unique θn > 0 such that the system (8)− (9) has a solution for k = n and

εn = 1.

We present the proof of Lemma 5.1 after establishing the following guarantee on the competitive

ratio of ALGAD.

Theorem 5.2. Let θn > 0 as in Lemma 5.1. Using the densities βi,n/
∫ 1
0 βi,n(p, q) dq for ALGAD

guarantees
v(ALGAD)

v(OPT)
≥
(
1− (1− p)n−1pn

1− (1− p)n

)
· θn. (10)
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Proof. Let ri be the probability that the algorithm observes Xi, i ∈ [n]. Then, we have

v(ALGAD) =
n∑

i=1

ri

∫ 1

0

βi,n(p, u)∫ 1
0 βi,n(p, q) dq

(1− p)

∫ ∞

F−1(1−u)
x dF (x) du,

and via induction, we have r1 = 1 and for i > 1, ri =
∫ 1
0 βi−1,n(p, q)(1 − pq) dq. Hence, using the

system (8)− (9), we obtain

v(ALGAD) =
n∑

i=1

∫ 1

0
βi,n(p, u) · (1− p)

∫ q

0
F−1(1− q)dqdu (11)

= θn

∫ 1

0
F−1(1− q)gn(p, q)dq − θn

∫ 1

0
F−1(1− q) · n(1− p)ndq, (12)

where (11) follows from a change of variable and using ri =
∫ 1
0 βi,n(p, q) dq for i > 1. Then, using

a ratio comparison, we have∫ 1
0 F−1(1− q)gn(p, 1) dq∫ 1
0 F−1(1− q)gn(p, q)dq

≤ (1− p)n−1pn

1− (1− p)n
≤ 1,

and applying this bound in (12), we obtain

v(ALGAD) ≥ θn ·
(
1− (1− p)n−1pn

1− (1− p)n

)∫ 1

0
F−1(1− u)gn(p, u) du = θn ·

(
1− (1− p)n−1pn

1− (1− p)n

)
v(OPT),

which concludes the proof.

We now present the proof of Lemma 5.1. The idea is to generalize the monotonicity of ε1 as

a function of θn to εi for all i. To this end, we first present an alternative characterization of the

system (8)− (9).

Proof of Lemma 5.1. We start with an intermediate result. Given a fixed k ≤ n, we claim that for

all i ≤ k, the following recursion holds:

gn(p, ϵi)− gn(p, ϵi−1) = −1− p

θn
− p

(
ϵi−1 · gn(p, ϵi−1)−

∫ ϵi−1

0
gn(p, q)dq

)
. (13)

We proceed by induction. The base case i = 1 can be verified easily. Assuming that (13) holds for

some i < k, by the fundamental theorem of calculus, we have

gn(p, ϵi+1)−gn(p, ϵi) =

∫ ϵi+1

ϵi

g′n(p, q)dq =

∫ ϵi

ϵi−1

g′n(p, q)(1− pq)dq (Equation (9))

=

∫ ϵi

ϵi−1

g′n(p, q)dq − p

∫ ϵi

ϵi−1

g′n(p, q)qdq

= gn(p, ϵi)− gn(p, ϵi−1)− pϵi · gn(p, ϵi) + pϵi−1 · gn(p, ϵi−1) + p

∫ ϵi

ϵi−1

gn(p, q)dq
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= −1− p

θn
+ p

∫ ϵi

0
gn(p, q)dq − pϵi · gn(p, ϵi)

where the last equality comes from plugging in the induction hypothesis.

Note that from (13), we obtain that εi < εi+1 and g′n(p, εi+1)ε
′
i+1 = 1−p

θ2n
+ g′n(p, εi)(1 − pεi)ε

′
i,

where the derivative is with respect to θn. From here, we see that all εi’s are decreasing in θn.

Thus, by making θn sufficiently large, we can sequentially define εk+1, εk+2, · · · ≤ 1 until we reach

εn = 1. This concludes the proof of Lemma 5.1.

Asymptotic Analysis. We now show that lim infn→∞ γAD
n,p ≥ θ∗ ≈ 0.745. Let fn(p, λ) :=

gn(p, λ/n)/(1− p)n. Then, (13) becomes

fn(p, λi)− fn(p, λi−1)

1/n
= − 1

θn
− p

(
λi−1 · fn(p, λi)−

∫ λi−1

0
fn(p, w)dw

)
, (14)

where λi = nεi for all i. Note that θn ∈ [0, 1]. Then, there exists a subsequence that converges

to some θ̂ ∈ [0, 1]. For simplicity, we abuse notation and denote this subsequence by θn so that

θn → θ̂ ∈ [0, 1]. Now, doing a linear piece-wise approximation of λi via a function λn(x)’s such that

λi = λn(i/n) and taking the limit in n of (14), we obtain

f(p, λ(x))′ = −1

θ̂
− p

(
λ(x) · f(p, λ(x))−

∫ λ(x)

0
f(p, w)dw

)
= 1− 1

θ̂
− pλ(x)e−λ(x)p − e−λ(x)p,

where f(p, λ) = limn→∞ fn(p, λ) = e−λp. Furthermore, we have conditions λ(0) = 0 and limx→1 λ(1) =

+∞. Performing the change of variable y(x) = e−λ(x)p, we obtain the following system:

y′(x) = 1− 1

θ̂
+ (ln y(x)− 1)y(x),

y(0) = 1, lim
x→1

y(x) = 0.

This is exactly the Hill and Kertz equation presented in §3, which has a solution if and only if

θ̂ = θ∗ ≈ 0.745, which yields that lim infn θn = θ∗. Finally per Theorem 5.2, for any p ∈ (0, 1), we

have

lim inf
n→∞

γAD
n,p ≥ lim inf

n→∞
θn ·

(
1− (1− p)n−1pn

1− (1− p)n

)
= θ∗.

5.2 Upper Bound

In this subsection, we prove Theorem 1.3 to establish that the lower bound derived in the previous

section is optimal. Fix p, ϵ ∈ (0, 1) and n sufficiently large so that n ≥
⌈
− log(y(1−ϵ))

p

⌉
. We define the

following distribution through its inverse, where y(·) is the solution to the Hill and Kertz equation:
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F−1(1− u) =
θ∗

(1− p)n
· δ{0}(u)−

p

1− p

∫ 1−ϵ

y−1(e−pnu)

1

y′(s)
dsI(0,1](u).

Given ϵ > 0, denote the value of the optimal algorithm by vϵ(OPT) under F−1(1−u) that is defined

above. The following proposition provides a characterization of vϵ(OPT).

Proposition 5.3. vϵ(OPT) = θ∗ −
∫ 1−ϵ
0

1
y′(s)

(
1−

(
1 + log(y(s))

n

)n)
ds.

We then characterize the maximum value that can be obtained by any online algorithm. Con-

sider the following dynamic program, where for any n ≥ 1 and p ∈ (0, 1), Dϵ
i is the value at

observing Xi, i ∈ [n+ 1], with the convention Xn+1 = 0:

Dϵ
i = sup

q∈[0,1]

{
(1− p)

∫ q

0
F−1(1− u)du+ (1− pq)Dϵ

i+1

}
,∀i ∈ [n] and Dϵ

n+1 = 0. (15)

In particular, we are interested in analyzing the dynamic program solution D0
i . for all i ∈ [n]. We

now examine its continuous approximate counterpart (denoted by d(x)) through Lemma 5.4 and

link it back to discrete valued D0
i via Lemma 5.5. In order to find d(0), we rewrite (15) from an

ODE perspective. Consider the following Bellman equation:

−d′(x) = sup
µ∈[0,∞]

{∫ µ

0
h(u)du− pµd(x)

}
, (16)

where h(u) := θ∗ · δ{0}(u)− p
∫ 1
y−1(e−pu) (1/y

′(s)) dsI(0,1)(u). In what follows, we show that for any

x ∈ (0, 1], (16) above can be satisfied by

d(x) =

∫ 1

x
− 1

y′(s)
ds and µ = − log(y(x))

p
. (17)

Lemma 5.4. (17) provides a unique solution to the Bellman equation (16), when x ∈ (0, 1].

Next, we connect the continuous dynamic program value (denoted by d(i/n)) with Dϵ
i .

Lemma 5.5. Fix σ ∈ (0, 1) and n > − log(y(1− σ)). Let

ησ :=
nσ − log(y(1− σ))(1− σ)

(1− σ) (n+ log(y(1− σ)))
. (18)

Let D̃i := (1 + ησ) · d((1− σ)i/n)). Then for any i ∈ [n], we have Dϵ
i ≤ D0

i ≤ D̃i.

Proof. The first inequality follows from observing that F−1(1 − u) is a positive, non-increasing

function in ϵ. Thus, per (15), it holds that Dϵ
i ≤ D0

i for any ϵ > 0. To prove the second inequality,

we use the following claim.

Claim 5.6. For any q ∈ [0, 1], we have (1− p)
∫ q
0 F−1(1− u)du+ (1− pq)D̃i+1 ≤ D̃i.
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Now we are ready to show the second inequality. We proceed by induction. Note that for some

qi ∈ [0, 1], the bellman equation for D0
i is satisfied with equality:

D0
i = (1− p)

∫ qi

0
F−1(1− u)du+ (1− pqi)D

0
i+1

≤ (1− p)

∫ qi

0
F−1(1− u)du+ (1− pqi)D̃

0
i+1 ≤ D̃i (Induction Hypothesis and Claim 5.6)

Finally, we compare the value of dynamic program and the optimal algorithm. Specifically, we

consider the ratio Dϵ
1/v

ϵ(OPT), and analyze its behavior in the asymptotic regime. Noting that

Dε
1 ≤ D0

1 ≤ (1 + ησ)d((1− σ)/n) and ησ → σ/(1− σ) when n → ∞, we have

lim
n→∞

Dϵ
1

vϵ(OPT)
≤ lim

n→∞

(1 + ησ) · d((1− σ)/n))

vϵ(OPT)
=

1

1− σ

∫ 1
0 − 1

y′(s)ds

θ∗ −
∫ 1−ϵ
0

1−y(s)
y′(s) ds

,

where in the last inequality we use Proposition 5.3 and Lebesque’s dominated convergence theorem.

This bound holds for any σ ∈ (0, 1). Thus,

γAD
p ≤

∫ 1
0 − 1

y′(s)ds

θ∗ −
∫ 1−ϵ
0

1−y(s)
y′(s) ds

for any ε ∈ (0, 1). Then letting ε → 0, we see that the right-hand side tends to θ∗ per Theorem

3.11 in Liu et al. (2020), which concludes our proof.

6 Final Remarks

We introduced the Online Selection with Uncertain Disruption (OS-UD) problem, which cap-

tures unexpected disruptions resulting from serving requests. We provided a non-adaptive single-

threshold algorithm with a tight competitive ratio of 1 − 1/e. We also analyzed the general class

of adaptive threshold algorithms and showed that an asymptotic competitive ratio of θ∗ ≈ 0.745 is

attainable, and this is tight.

Even though in this work we focus on the case of fixed disruption probability p, we can use the

techniques developed for the non-adaptive single-threshold algorithms to analyze a rare disruption

regime, in particular the case when p = α/n with α ≤ 1. Indeed, letting q = 1 in Lemma 4.2

and using the fact that 1 − x ≤ e−x for all x ∈ R, we obtain the following lower bound on the

competitive ratio:
(
1−e−α

α

)
min

{
1, α

1−(1−α/n)n

}
= (1 − e−α)/α. This competitive ratio is larger

than 1 − 1/e for α ∈ [0, 1), improving the ratio from the non-adaptive case for fixed p. Moreover,

this asymptotic competitive ratio converges to 1 as α → 0.

Our study leaves open the question of determining a constant lower bound for γAD
n,p for all n ≥ 1.

Using the linear programming approach in Perez-Salazar et al. (2025) (see also (Jiang et al., 2023))

we can approximate γAD
n,p numerically (see Figure 1). We empirically observe that as n grows, γAD

n,p
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decreases to θ∗. We also note that, for finite n, when the disruption probability is close to 1, the

problem aligns closely with the classical single-selection i.i.d. prophet inequality Indeed, although

OS-UD allows multiple selections, if p = 1 − ε with ε ≈ 0, the expected gain beyond the first

selection is multiplied by O(ε2). Therefore, this regime yields limited new insight, as it reduces to

the single-selection case.

Figure 1: Estimated competitive ratios using linear programming formulation in Perez-Salazar et al.
(2025) for p ∈ [0, 1].

In this paper, we model the disruption as a memoryless process. A natural extension would be

to consider broader classes of disruption processes. For example, the disruption probability might

increase as more values are accepted, modeling a system that wears out over time; conversely,

it could decrease, representing a system that becomes more reliable—such as a growing start-up

stabilizing with each accepted value. However, analyzing such variants is non-trivial, as optimal

algorithms must account for the number of selections made—a known challenge in multiple-selection

problems and an active area of research (Alaei, 2014; Brustle et al., 2025; Jiang et al., 2023).

Furthermore, the competitive ratio can depend on this disruption process. In Example 7.1, we show

that the competitive ratio in the OS-UD problem can be zero for general disruption processes.

Lastly, OS-UD assumes a single disruption event that terminates service without collecting the

last value. Another interesting direction is to incorporate penalties and partial recoveries on the

last accepted value, akin to those studied in knapsack settings (Dean et al., 2008; Fu et al., 2018).

This is particularly relevant in practical applications such as ticketing and reservations.

7 Missing Proofs from Section 3

Proof of Proposition 3.1. First, note that τn = 0, since accepting always brings a non-negative

value. Assume that an optimal algorithm, denoted by ALGOPT, has τi < τi+1 for some i ∈ [n− 1].

Consider the following alternative algorithm ALGALT that swaps these two thresholds, i.e., the

alternative algorithm accepts Xi with threshold τi+1, accepts Xi+1 with threshold τi, and rest of

the thresholds remain unchanged. Denote by v(ALGOPT) and v(ALGALT) the expected total values

collected under these two algorithms. Denote the expected total value obtained by both algorithms
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before observing the ith value by v[1,...,i−1]. Conditioned on observing the (i + 2)th value, denote

the expected total value obtained by both algorithms starting from observing (i + 2)th value by

v[i+2,...,n]. Let Xτi := E[Xi|Xi ≥ τi] and pi := Pr[Xi ≥ τi]. Finally, let pr be the probability that

the algorithm observes value Xi, and ci = v[1,...,i−1] + pr(1 − pi+1p)(1 − pip)v[i+2,...,n]. Then the

expected total values for both algorithms can be written as

v(ALGOPT) = ci + prX
τipi(1− p) + pr(1− pip)X

τi+1pi+1(1− p),

v(ALGALT) = ci + prX
τi+1pi+1(1− p) + pr(1− pi+1p)X

τipi(1− p),

which yields v(ALGALT)−v(ALGOPT) = pr(1−p)ppipi+1(Xτi+1−Xτi) ≥ 0. Thus, one can construct an

alternative algorithm that employs a non-increasing sequence of thresholds by iteratively swapping

thresholds, which achieves optimality.

Proof of Proposition 3.2. The first equality directly follows from the following claim, where its

proof is given in the end of the current proof.

Claim 7.1. For any j ∈ [n], E[X(j)] =
∫ 1
0 Pr[Bin(n, v) ≥ j] · r(v)dv, where r(v) > 0 satisfies∫ 1

u r(v)dv = F−1(1− u).

To prove the second equality, we note that

v(OPT) =
n∑

i=2

p · (1− p)i−1
i−1∑
j=1

∫ 1

0
F−1(1− q) · (1− q)n−jqj−1 · j ·

(
n

j

)
dq

+ (1− p)n
n∑

j=1

∫ 1

0
F−1(1− q) · (1− q)n−jqj−1 · j ·

(
n

j

)
dq

=

∫ 1

0
F−1(1− q)

n−1∑
j=1

(1− q)n−jqj−1 · j ·
(
n

j

) n∑
i=j+1

p · (1− p)i−1dq

+

∫ 1

0
F−1(1− q)

n∑
j=1

(1− q)n−jqj−1 · j ·
(
n

j

)
(1− p)ndq

=

∫ 1

0
F−1(1− q)

n∑
j=1

(1− q)n−jqj−1 · j ·
(
n

j

)
· (1− p)jdq =

∫ 1

0
F−1(1− q)gn(p, q)dq,

where the last equality follows from the binomial theorem.

Proof of Claim 7.1 For any j ∈ [n], let bn,j := j ·
(
n
j

)
. Then we can write the expected value of

the jth top ordered statistics as follows:

E[X(j)] =

∫ ∞

0
xf(x)F (x)n−j(1− F (x))j−1 · bn,j dx =

∫ 1

0
F−1(1− u) · (1− u)n−juj−1 · bn,j du

=

∫ 1

0

∫ 1

u
r(v)dv · (1− u)n−juj−1 · bn,j du =

∫ 1

0
Pr[Bin(n, v) ≥ j] · r(v) dv, (19)
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where the second equality uses the substitution 1 − F (x) = u, and the third equality comes from

our assumption that F−1 is differentiable and strictly decreasing so that the existence of r(v) is

guaranteed, and the last equality changes the order of integration.

Example 7.1. Here, we show that varying the disruption probability within the selection process

can lead to a competitive ratio of 0. Let n and s be large constants, where s ≪ n. Assume n is

divisible by s for simplicity. Assume Xi ∼ Exp(1). Consider the disruption process Pr(Yi = 1) = 1

if i = 1, 1 + s, . . . , 1 + (n/s− 1)s, and 0 otherwise. The optimal clairvoyant algorithm collects top

n/s ordered statistics in expectation, where the exponential distribution’s order statistics roughly

follows harmonic numbers (e.g., see David and Nagaraja (2004)). Thus, v(OPT) ≈
∑n/s

l=1 log
(
n
l

)
≈(

n
s log s+

n
s − 1

)
. On the other hand, the optimal online algorithm’s value is n/s by accepting every

value when Yi = 0. From here, we see that v(ALG)/v(OPT) → 0 as n and s grow large.

8 Missing Proofs from Section 4

Lemma 8.1. Fix p ∈ (0, 1). Then v∑n
i=2 p·(1−p)i−1

∑i−1
j=1 Pr[Bin(n,v)≥j]+(1−p)n·nv

is a non-decreasing

function in the interval v ∈ [0, q].

Proof. It is sufficient to show that the function f(v) = v/
(∑i

j=1 Pr[Bin(n, v) ≥ j]
)
is non-decreasing

for fixed i ∈ [n− 1]. Consider g(v) = 1/f(v), and its derivative with respect to v:

g′(v) =
1

v2

 i∑
j=1

(
n∑

k=j

(
n

k

)
kvk(1− v)n−k −

(
n

k

)
(n− k)vk+1(1− v)n−k−1)− Pr[Bin(n, v) ≥ j]


=

1

v2

i∑
j=1

n!

(n− j)!(j − 1)!
vj(1− v)n−j − vn+1

1− v
− Pr[Bin(n, v) ≥ j]

= − ivn+1

v2(1− v)
+

1

v2

i∑
j=1

(j · Pr[Bin(n, v) = j]− Pr[Bin(n, v) ≥ j]).

Observe that ivn+1/
(
v2(1− v)

)
is non-negative, and for each k ∈ [1, i], k · Pr[Bin(n, v) = k] −∑k

j=1 Pr[Bin(n, v) = j] = 0, as Pr[Bin(n, v) ≥ j] =
∑n

k=j Pr[Bin(n, v) = k]. Thus, g′(v) ≤ 0, and

f(v) is non-decreasing in v ∈ [0, q].

Proof of Lemma 4.4.

v(OPT) ≥
n∑

i=2

p · (1− p)i−1
i−1∑
j=1

∫ 1

0
F−1(1− u) · (1− u)n−juj−1 · j ·

(
n

j

)
du

=

∫ 1

0

n∑
i=2

p · (1− p)i−1
i−1∑
j=1

a1
n
δ{0}(u) · (1− u)n−juj−1 · j ·

(
n

j

)
du

+

∫ β/n

0

n∑
i=2

p · (1− p)i−1
i−1∑
j=1

a2 · (1− u)n−juj−1 · j ·
(
n

j

)
du
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= a1

n∑
i=2

p(1− p)i−1 + a2

n∑
i=2

i−1∑
j=1

p · (1− p)i−1 Pr[Bin(n, β/n) ≥ j]

= a1(1− p)(1− (1− p)n−1) + a2

i−1∑
j=1

Pr[Bin(n, β/n) ≥ j][(1− p)j − (1− p)n].

The second equality recognizes that Pr[Bin(n, β/n) ≥ j] =
∫ β/n
0 (1 − u)n−juj−1 · j ·

(
n
j

)
du, and we

recover the lemma by letting n → ∞.

Proof of Lemma 4.5. We derive the performance of ALGq via direct calculation.

v(ALGq) = An(q, p) ·
∫ q
0 F−1(1− u)du

q
= An(q, p) ·

∫ q
0 (a1/n)δ{0}(u) + a2I(0,β/n](u)du

q
(Using (6))

=
An(q, p)

q
·
(a1
n

+ a2 ·min{q, β/n}
)

= max

{
sup

q∈[0,β/n]

An(q, p)

q
·
(a1
n

+ a2 · q
)
, sup
q∈[β/n,1]

An(q, p)

q
·
(
a1
n

+
a2β

n

)}

=
1− p

p
·max

{
sup

λ∈[0,β]

1

λ

(
1−

(
1− λp

n

)n)
(a1 + a2λ) , sup

λ∈[β,n]

1

λ

(
1−

(
1− λp

n

)n)
(a1 + a2β)

}
,

(20)

where the last equality follows from the change of variable q = λ/n. We denote by r1(λ) the second

term in the maximum argument in (20). We have r′1(λ) =
1
λ2

(
λp
(
1− λp

n

)n−1
+
(
1− λp

n

)n
− 1

)
,

and for λ = 2/p, the derivative of r1 becomes negative; hence, supλ∈[β,n] r1(λ) can be restricted to

[β,max{β, 2/p}]. Next, letting n → ∞ yields

lim
n→∞

v(ALGq) =
1− p

p
·max

{
sup

λ∈[0,β]

1− e−λp

λ
(a1 + a2λ), sup

[β,max{β,2/p}]

1− e−λp

λ
(a1 + a2β)

}
. (21)

We denote by r2(λ) and r3(λ) the first and second terms in the maximum argument in (21),

respectively. Note that r′2(λ) = [a1(e
−λp − 1) + pλe−λp(a1 + a2λ)]/λ

2. Thus, r2
′(λ∗) = 0 implies

that e−λ∗p
(
a1 + a1pλ

∗ + a2p(λ
∗)2
)
= a1; hence, supλ∈[0,β] r2(λ) = max{r2(λ∗), r2(β), limλ→0 r2(λ)}

where 0 < λ∗ < β, if it exists. Moreover, r3(λ) is a decreasing function in λ, thus the supremum is

attained at λ = β. We combine both cases to conclude the proof.

9 Missing Proofs from Section 5

Proof of Proposition 5.3. By the second characterization of vϵ(OPT) in (1), we have

vϵ(OPT) =

∫ 1

0
F−1(1− u)gn(p, u)du
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=

∫ 1

0

(
θ∗

(1− p)n
· δ{0}(u)−

p

1− p

∫ 1−ϵ

y−1(e−pnu)

1

y′(s)
dsI(0,1)(u)

)
(1− p) · n(1− pu)n−1du

= θ∗ −
∫ 1

0

∫ 1−ϵ

y−1(e−pnu)

1

y′(s)
ds(1− pu)n−1pndu

= θ∗ −
∫ 1

e−np

∫ 1−ϵ

y−1(v)

1

y′(s)
ds

(
1 +

log(v)

n

)n−1 dv

v
(Per v = e−npu)

= θ∗ −
∫ 1−ϵ

0

∫ 1

max{y(s),e−np}

(
1 +

log(v)

n

)n−1 dv

v

1

y′(s)
ds (Changing order of integration)

= θ∗ −
∫ 1−ϵ

0

1

y′(s)

(
1−

(
1 +

log(y(s))

n

)n)
ds. (Per y(s) > e−np when s ∈ (0, 1− ϵ))

Proof of Lemma 5.4. We first show that (17) satisfies the Bellman equation (16).∫ µ

0
h(u)du− pµd(x)

=

∫ − log(y(x))/p

0

(
θ∗ · δ{0}(u)− p

∫ 1

y−1(e−pu)

1

y′(s)
dsI(0,1)(u)

)
du− p · log(y(x))

p
·
∫ 1

x

1

y′(s)
ds

= θ∗ − p

∫ 1

0

∫ min{− log(y(x))/p,− log(y(s))/p}

0
du

1

y′(s)
ds− log(y(x))

∫ 1

x

1

y′(s)
ds

= θ∗ +

∫ 1

0

max{log(y(x)), log(y(s))}
y′(s)

ds−
∫ 1

x

log(y(x))

y′(s)
ds

= θ∗ +

∫ x

0

log(y(s))

y′(s)
ds+

∫ 1

x

log(y(x))

y′(s)
ds−

∫ 1

x

log(y(x))

y′(s)
ds (Monotonicity of y(x))

= θ∗ +

∫ x

0

y′′(s)

(y′(s))2
ds (Per y′′(x) = y′(x) log(y(x)))

= θ∗ − 1

y′(x)
+

1

y′(0)
= − 1

y′(x)
= −d′(x).

Next, we show that µ is indeed the unique maximizer. We proceed in two steps: (i) the derivative

with respect to µ is zero. (ii) the derivative is positive when µ = 0, and the derivative is negative

as µ → ∞. By Leibniz integral rule, we have d
dµ

{∫ µ
0 h(u)du− pµd(x)

}
= h(µ)− p · d(x).

To verify (i), note that

h(µ)− p · d(x) = θ∗ · δ{0}(−
log(y(x))

p
)− p

∫ 1

x

1

y′(s)
dsI(0,1)(µ)− p ·

∫ 1

x
− 1

y′(s)
ds = 0.

To verify (ii), note that limµ→∞ h(µ)− p · d(x) = −p · d(x) < 0 and

h(0)− p · d(x) = θ∗ − p

∫ 1

0

1

y′(s)
ds− p ·

∫ 1

x
− 1

y′(s)
ds = θ∗ − p ·

∫ x

0

1

y′(s)
ds > 0.
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Proof of Claim 5.6. Let di,σ := d((1− σ)i/n)) and yi,σ := y((1− σ)i/n)). Then, we have

(1− p)

∫ q

0
F−1(1− u)du+ (1− pq)(1 + ησ)di+1,σ

≤ 1

n

∫ µ

0
h(u)du+

(
1− pµ

n

)
(1 + ησ)

(
di,σ +

1− σ

n
d′i,σ

)
(Rewrite q = µ

n & concavity of di,σ)

= (1 + ησ)di,σ +
1

n

(∫ µ

0
h(u)du− (1 + ησ)pµdi,σ

)
+

1

n
(1 + ησ)

(
d′i,σ(1− σ)− pµ

n
d′i,σ(1− σ)

)
≤ D̃i −

d′i,σ
n

+
ησ log(yi,σ)

n
di,σ +

d′i,σ
n

+
ησd

′
i,σ

n
−

σd′i,σ
n

−
σησd

′
i,σ

n
+

log(yi,σ)

n2
d′i,σ(1− σ)(1 + ησ)

= D̃i +
ησ log(yi,σ)

n
di,σ +

ησd
′
i,σ

n
−

σd′i,σ
n

−
σησd

′
i,σ

n
+

log(yi,σ)

n2
d′i,σ(1− σ)(1 + ησ)

Note that ησ log(yi,σ)di,σ < 0, and since d′i,σ < 0, it is sufficient to show that ησ − σ − σησ +
log(yi,σ)

n (1− σ)(1 + ησ) ≥ 0, which is guaranteed by (18).
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