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Abstract

In numerous online selection problems, decision-makers (DMs) must allocate on the fly lim-
ited resources to customers with uncertain values. The DM faces the tension between allocating
resources to currently observed values and saving them for potentially better, unobserved val-
ues in the future. Addressing this tension becomes more demanding if an uncertain disruption
occurs while serving customers. Without any disruption, the DM gets access to the capacity in-
formation to serve customers throughout the time horizon. However, with uncertain disruption,
the DM must act more cautiously due to risk of running out of capacity abruptly or misusing
the resources. Motivated by this tension, we introduce the Online Selection with Uncertain Dis-
ruption (OS-UD) problem. In OS-UD, a DM sequentially observes n non-negative values drawn
from a common distribution and must commit to select or reject each value in real time, without
revisiting past values. The disruption is modeled as a Bernoulli random variable with probabil-
ity p each time DM selects a value. We aim to design an online algorithm that maximizes the
expected sum of selected values before a disruption occurs, if any.

We evaluate online algorithms using the competitive ratio—the ratio between the expected
value achieved by the algorithm and that of an optimal clairvoyant algorithm that knows all
value realizations in advance but still faces uncertain disruption. Using a quantile-based ap-
proach, we devise a non-adaptive single-threshold algorithm that attains a competitive ratio
of at least 1 — 1/e, and an adaptive threshold algorithm characterized by a sequence of non-
increasing thresholds that attains an asymptotic competitive ratio of at least 0.745. Both of
these results are worst-case optimal within their corresponding class of algorithms and continue
to hold regardless of whether the last value is partially recoverable. Our results reveal an in-
teresting connection between the OS-UD problem and the i.i.d. prophet inequality problems as

the number of customers grows large.

1 Introduction

Online selection models have gained increasing attention, as they capture key features of extensive
applications such as online advertising (Mehta and Panigrahi (2012)), online resource allocation
(Delong et al. (2024)), and applicant evaluation (Epstein and Ma (2024)). Generally speaking,
in these problems, a decision-maker (DM) must irrevocably allocate limited resources to incoming
customers with uncertain values. The DM faces a fundamental tension between allocating resources

to currently observed values and saving them for potentially better, unobserved values.
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Alleviating this tension becomes more challenging if committing to a request may cause a dis-
ruption, potentially halting the remaining process. For example, in cloud computing, providers
such as Amazon Web Services and Azure often offer spot instances at lower prices than on-demand
instances by utilizing underutilized resources. While these providers aim to maximize resource
utilization and generate additional revenue through low-priced spot instances, providers must man-
age the risk of reclaiming these resources for higher-priority on-demand users; when reclamation
occurs, service is interrupted and the provider typically recovers only a fraction of the value from
the disrupted task (e.g., see Cohen et al. (2019); Perez-Salazar et al. (2022)). In a similar vein, an
owner of a reusable resource (e.g., a host renting her property on Airbnb, or a driver accepting a
ride on Uber) might experience a disruption in operations due to property damage or other unfore-
seen issues caused by the customer. While in practice such disruptions are often temporary—for
instance, an Airbnb host may suspend operations during repairs and then resume hosting—one can
view these events as a sequence of disruptions and re-entries. Our model captures the cost of these
interruptions through the abstraction of disruptions that halt service, regardless of whether they
are permanent or repeated. In this context, the last accepted transaction typically yields its full
value before any subsequent downtime. Motivated by this, we introduce the Online Selection with
Uncertain Disruption (OS-UD) problem, which captures such disruptions when serving incoming
requests.

In the OS-UD problem, a finite sequence of n independent and identically distributed (i.i.d.)
non-negative random variables is observed sequentially. Upon observing a value, the DM must
decide whether to (i) select it, or, (ii) reject it and observe the next value, if any, without the
possibility of reconsidering past observations. Importantly, with a known probability p € [0, 1],
selecting a value triggers a disruption that halts the process, and the DM partially recovers the last
selected value; otherwise, with probability 1 — p, the selection is retained and the process continues
with the remaining observations.

Our objective is to design an online algorithm that maximizes the expected sum of selected
values under disruption. We evaluate the performance of algorithms using the competitive ratio,
which is the fraction between the value of an algorithm and the value of an optimal clairvoyant
algorithm that knows the values upfront and can select order of observation, but still faces unknown
disruptions. The competitive ratio is a number in the interval [0, 1] that measures the “price” paid
by the DM for not knowing all the sequence of values upfront. Our definition of competitive ratio
differs slightly from the usual definition found in other online selection problems (e.g., see Krengel
and Sucheston (1977); Mehta and Panigrahi (2012); Hill and Kertz (1982); Correa et al. (2021))—a
formal description of our problem and discussion is presented in §1.1. Our goal is to shed light
on the following questions: (i) What is the optimal (worst-case) competitive ratio for the OS-UD
problem? (ii) How should a DM accept incoming requests to achieve the optimal competitive ratio?

In general, without imposing any structure on the disruption process, any online algorithm can
perform arbitrarily poorly and the competitive ratio can be 0 (see Example A.1). In this paper,

we answer both questions by devising simple threshold policies, and we provide an exhaustive



analysis for the case when the probability of disruption p is a fixed constant. We first show
that the optimal online algorithm induced by a stochastic dynamic program is characterized by
a sequence of non-increasing thresholds, where the algorithm accepts the incoming request if and
only if its value is at least the current threshold. Motivated by this, in order to quantify the
“price” that the DM must pay due to uncertainties, we analyze two classes of algorithms that
are easy to describe: non-adaptive (fixed) threshold algorithms and adaptive threshold algorithms.
Such algorithms are also desirable in practice, as they are simple-to-implement, have economic
interpretations (Arnosti and Ma, 2023; Van Mieghem, 1995; Naor, 1969), and are widely used in
posted price mechanisms (Chawla et al., 2007, 2010, 2024; Correa et al., 2019).

For non-adaptive threshold algorithms, we offer a complete characterization of the optimal
competitive ratio, which is 1 — 1/e, through the design of an algorithm and a hard instance. For
adaptive threshold algorithms, we present an algorithm that employs a non-increasing sequence
of thresholds with a tight asymptotic competitive ratio of 8* = 0.745, where 6* is a parameter
appearing in the Hill and Kertz equation (Hill and Kertz, 1982; Kertz, 1986). Interestingly, 6*
coincides with the optimal competitive ratio of the i.i.d. prophet inequality problem (Correa et al.,
2021; Hill and Kertz, 1982; Kertz, 1986).

The techniques derived for the fixed disruption probability case can also be adapted to the
case when disruption is rare (where p = «a/n, for @ < 1). Notably, one can obtain asymptotic
competitive ratios that are strictly larger than 6* (see §8). After presenting the formal introduction

of our problem in the next subsection, we provide the details of our results and techniques in §1.2.

1.1 Problem Formulation

Given a fixed disruption probability p € [0, 1] and a partial recovery parameter ¢ € [0, 1], an instance
I of the OS-UD problem is given by a pair (n, F), where n > 1 is the number of values, and F
is a continuous and increasing cumulative distribution function supported in the non-negative real
numbers.! Let F be the set of all such cumulative distribution functions. An instance I = (n, F')
encodes two sequences of random variables (X;)?" ; and (Y;)"_,. The X;’s are non-negative and i.i.d.
following the distribution F'. The Y;’s are are i.i.d. 0/1-random variables with Pr[Y; = 1] = p € [0, 1].
The DM observes X;’s in a fixed order 1, ..., n, sequentially. Upon observing X;, the DM can either
skip to the next value (if one remains) or select the current one. If the DM selects X;, the DM then
observes Y; indicating whether making this selection will disrupt the whole process. If Y; = 1, we
say that a disruption occurred and the process terminates. In this case, the DM receives the sum
of selected values up to the disruption and a fraction { of the last selected value X;. If Y; = 0, the
process continues, and the DM receives X; as part of the current round’s value. We aim to find an
online algorithm ALG that maximizes the total expected value collected. We denote by v(ALG([))

the expected value obtained by algorithm ALG for an instance I.

"We can assume that F' is continuous and smooth by perturbing the observed values with a small continuous
noise. The monotonicity assumption is less common, but follows a similar principle of perturbing the original F (e.g.,
see Liu et al. (2020); Perez-Salazar and Verdugo (2024)).



We adopt a competitive analysis, where we compare the value of an algorithm to an optimal
clairvoyant algorithm that has access to the value realizations Xi,...,X,,, in advance, but not to
the sequence Y1, ...,Y,. The clairvoyant does not operate sequentially in time; rather, it can freely
choose the order in which to examine the values, denoted X, (1), ..., Xg (), where o is a permutation
of [n]. In this sense, the clairvoyant searches over the available options without being constrained
by the timeline of arrivals, thereby representing the best possible performance under full knowledge
of values, but uncertainty about disruptions. Thus, the optimal clairvoyant algorithm OPT obtains
a value of the top D — 1 order statistics before disruption, and additionally receives ( of the last

item if disruption occurs within n values:

min{D—1,n}
v(0PT(I)) = E | max Y Xou+ (- HD <n}X,p)
=1

[min{D—1,n}

=E| > Xp+CHD<n}Xp |, (1)
=1

where D is a geometric random variable with parameter p,? and X (j) denotes the 4t largest order
statistic. We abuse notation and simply write ALG and OPT for ALG(I) and OPT([), respectively,
when the instance I is clear from the context. For convenience, we will also omit the word “online”
when referring to online algorithms when the context is clear. Then, given an algorithm ALG with

a disruption probability p and a partial recovery parameter (, its competitive ratio is

.. v(ALG)
inf ,
n>1,FeF v(0PT)

and we seek an algorithm with the largest competitive ratio possible. In the remainder of the
paper, we focus on the case p € (0,1), since: (i) when p = 0, there are no failures and it is optimal
to accept all values; (ii) when p = 1 and ¢ = 0, both the clairvoyant algorithm and any other
algorithm obtain a value of 0; and (iii) when p = 1 and ¢ € (0, 1], the problem reduces to the classic
i.i.d. prophet inequality problem with values rescaled by 1/¢.

We remark that the clairvoyant algorithm is different from the offline algorithm that knows
the realizations of X;’s and Y;’s upfront for all ¢ < n. The following example shows that it is
impossible to obtain a positive constant competitive ratio when we attempt to replace OPT by the

offline algorithm.

Example 1.1. Consider the following n > 1 i.i.d. values X1,...,X,, where X;’s are uniformly
distributed in [0,n]. Fiz p € (0,1) and a partial recovery parameter ¢ = 0. Note that the offline
algorithm will select all the values for which Y; = 0. Thus, the expected value obtained by the offline
algorithm is v(OPTMN®) .= E[number of i’s with Y; = 0] - E[X1] = (1 — p)n?/2. On the other hand,
we have v(OPT) < n/p. Then, v(ALG)/v(0PTOfine) < 4(0PT) /v(0PTOMine) < 2/(p(1 — p)n), for any

*That is, Pr[D = j] = p(1 — p)?~* for j > 1.



algorithm ALG. This shows that, for any fized p € (0,1), no constant competitive ratio is possible
when we compare v(ALG) against the value of the offline algorithm that knows all the information

n advance.

Note that one can formulate the DM’s problem as a stochastic dynamic program (see §3).
However, analyzing competitive ratios is not straightforward as we are comparing two algorithms
that operate with asymmetric information. Nevertheless, the dynamic program reveals a nice
structural property that we will leverage in our analysis. Indeed, given an instance I = (n, F') of
the OS-UD problem, there exists an optimal algorithm that employs thresholds 7 > --- > 7, such
that if the i*" observed value X; is at least 7;, then the algorithm selects it (see Proposition 3.1).
This motivates us to focus on the two extremes for this class of threshold-based algorithms: (1)
NA, which is the class of non-adaptive algorithms, where 71 = -+ = 7,; and (2) AD, which is the
class of adaptive algorithms, where we do not constrain the thresholds to be the same, but the
thresholds must be non-increasing, i.e., 71 > -+ > 7,,. For a fixed p € (0,1) and ¢ € [0,1], and a
class of algorithms C € {NA, AD}, we define the competitive ratio for instances of length n in class

C via

ALG(n, F
gt LS E)
” acinc FeF v(0PT(n, F))
Given that C is a class of threshold-based algorithms, we can exchange the supremum with the
infimum in the definition of VS,ILC without altering its value. Thus, the largest competitive ratio in

the class C for the OS-UD problem can be written as follows:

c . v(ALG) . . ¢
‘= su inf — inf )
Tp,C ALG iE ¢ n>1,FeF U(UPT) n>1 Tn,p.C

1.2 Owur Technical Contributions
Our first result provides a tight performance bound for the non-adaptive threshold algorithms.
Theorem 1.1. For any p € (0,1) and ¢ € [0, 1], we have *yg? =1-1/e.

To prove Theorem 1.1, we explicitly construct a fixed threshold algorithm with a competitive ra-
tio of at least 1—1/e, through focusing on a subclass of NA, the quantile-based threshold algorithms.
Algorithms in this subclass are parametrized by ¢ € [0,1], which we refer as the quantile of the
algorithm. An algorithm with a quantile ¢ computes a threshold 7 via ¢ = Pr[X > 7| =1 — F(7),
and selects any value in the input sequence that is at least .

To prove that the competitive ratio of an algorithm ALG is at least 8, one can use standard
stochastic dominance arguments, and it is sufficient to show that Pr (ALG obtains value of at least 7)
is at least 6 - Pr (OPT obtains value of at least 7) for any 7 > 0. However, due to possibility of mak-
ing multiple selections, analyzing both of these quantities is not evident. Instead, we characterize
the optimal values for both the clairvoyant and the quantile-based threshold algorithms as integrals

of the inverse of F. From here, we can deduce a lower bound for yN4

npiC that only depends on n



and p, and not dependent on ¢ or F. This lower bound turns out to be monotonically decreasing
in n and converging to 1 — 1/e, providing the desired lower bound on VE?. To prove an upper
bound on VECA’ we explicitly construct an instance (n, F') such that 7,1:{?’0 <1-1/e+o(1), and
since 'yg? = inf,,>1 'yrljf," o the result follows. For ease of exposition, we present the proof for the
case ( = 0 in §4, and we treat the general case ¢ € [0, 1] in §6.1.

We then turn our attention to the performance of the general class of adaptive threshold al-
gorithms, and we show that adaptivity is key. Our second result shows that a competitive ratio

better than 1 — 1/e is possible for such algorithms.

Theorem 1.2. For any p € (0,1) and ¢ € [0,1], liminf,, yggg > 0% ~ 0.745, where B = 1/0*
1s the unique solution to the integral equation fol (y—yhny+(B—1))"tdy =1.

Theorem 1.2 shows that there is a strict separation between acting adaptive and non-adaptive.
In order to prove this result, we provide a quantile-based algorithm similar to Correa et al. (2021)
and Perez-Salazar et al. (2025). For each observed value i, we sample a quantile ¢; from an
appropriate distribution, and we compute a threshold 7; such that Pr[X > 7;] = 1 - F(r;) = ¢,.
The algorithm then selects i if the observed value X; is at least 7;. By an appropriate choice of
distribution for the quantiles, we show that the value of the algorithm is asymptotically a fraction
0* ~ 0.745 of v(OPT). Again for ease of exposition, we present the algorithm and its analysis for
¢ =0 1in §5, and analyze the general case ¢ € [0, 1] in §6.2.

Our final result establishes a limit on the competitive ratio attainable by any algorithm for the

OS-UD problem, contributing another piece to the puzzle of answering our first research question.

Theorem 1.3. For any p € (0,1) and ¢ € [0,1], we have VI?CD < 0*, where 0* is defined in
Theorem 1.2.

We derive the upper bound by adapting the worst-case instance for the i.i.d. prophet inequality
problem from (Liu et al., 2020; Hill and Kertz, 1982) to OS-UD. We present the details in §5. Taken
together, Theorems 1.2 and 1.3 imply that, for any fixed p € (0,1), lim, 00 77?71124 = 0* =~ 0.745.

Our quantile-based techniques are highly flexible. In §7, we show that the single-threshold
approach extends to a variant of the OS-UD problem, in which the objective is not to maximize
the sum of the selected values, but rather to mazimize the largest value among them. For this
model, we prove a tight competitive ratio of 1 — e~ *®) for the class of non-adaptive algorithms,
where A = A(p) is the unique solution to the equation (1 — e *?) = pA(1 — e~*). Notably, this
competitive ratio lies in the range [1 — 1/e, 1] and approaches 1 as p — 0. A formal definition of

this model, along with our results and analysis, is provided in §7.

2 Related Work

Online selection, as well as the tension between collecting short-term values and saving resources
for long-term values, have been extensively studied in computer science and operations research

literature through the lens of optimal stopping theory (e.g., see Hill and Kertz (1992); Shiryaev



(2007); Krengel and Sucheston (1977)), and for their broad applicability on various practical prob-
lems from crowd-sourcing (Mehta and Panigrahi, 2012) to capital investment problem (Goyal and
Ravi, 2010). Here, we present several streams of literature that are closely related to our work.
Prophet Inequality. One related stream of literature to our work is the prophet inequality
problem (e.g., see Krengel and Sucheston (1977); Samuel-Cahn (1984)), in particular, the case with
ii.d. values. In the i.i.d. prophet inequality problem (Hill and Kertz, 1982), a DM must select at
most one value from a sequence of i.i.d. randomly generated values, and her goal is to design an
algorithm with a large competitive ratio, where the offline benchmark is the expected maximum
of the sequence of values. It is known that the optimal competitive ratio for the i.i.d. prophet
inequality problem is 6* ~ 0.745, which is the unique parameter appearing in the Hill & Kertz
equation (Hill and Kertz, 1982; Kertz, 1986; Correa et al., 2021). This optimal algorithm can be
attained by a quantile-based algorithm that depends solely on n and is independent of the specific
instance distribution. To facilitate the analysis of the algorithm, the competitive ratio can be
retrieved through a unique solution of the Hill and Kertz equation. Similar techniques to using
quantile algorithms (e.g., see Feng et al. (2025); Allouah et al. (2023)) and ODEs have also been
explored in various recent work (e.g., see Liu et al. (2020); Correa et al. (2021)). By generalizing
the Hill and Kertz equation, Brustle et al. (2025) introduces a novel non-linear system of differential
equations and provide tight analysis for the k-prophet inequality problem. Our paper extends the
single-selection prophet setting by incorporating an additional disruption indicator, and we use
a similar quantile-based approach to develop an adaptive threshold algorithm, which achieves an
asymptotic competitive ratio of 8" as well.

Random horizon. There is large body of work in optimal stopping problems with random hori-
zon (e.g., see (Hajiaghayi et al., 2007; Zhang and Jaillet, 2023)). Here, the disruption is caused
by not knowing the length n of values upfront. For example, the uncertain horizon setting has
been extensively studied within the framework of the secretary problem. When no distributional
information is available regarding the disruption time—beyond which no further applicants can be
picked—it is known that no algorithm can achieve a constant competitive ratio (Hill and Krengel,
1991). However, if a random termination time with a known value-independent distribution exists,
a conditionally optimal selection rule can be formulated (Samuel-Cahn, 1996). In our case, the
disruption is caused potentially by selecting a value, and in principle we could observe the whole
sequence of n values. Closer to our work is Alijani et al. (2020), which studies the prophet inequality
problem with supply uncertainty. Even though the OS-UD problem has applications in settings
with supply uncertainty, our main focus is in applications, where serving a request can disrupt the
remaining selection process. In a similar vein, our model is loosely related to stochastic knapsack
problems (e.g., see (Dean et al., 2008; Ma, 2018)), where items have unknown stochastic sizes, items
are packed sequentially, and if the knapsack is overflowed, then the whole process stops. We could
regard the OS-UD problem as a knapsack problem, where we have a knapsack of capacity 1, and
each item has two possible sizes: size 1/n with probability 1 — p and size 1 + 1/n with probability

p. Nevertheless, the knapsack literature mostly deals with approximation algorithms as opposed to



competitive analysis that we pursue in this work.

Dynamic matching and online resource allocation. The tension between committing to a
decision now and delaying decisions in anticipation of better opportunities arises as an inherent
trade-off in many stochastic models. In the context of dynamic matching and online resource
allocation, recent work addressed this trade-off through the lens of an all-time regret notion (Wei
et al., 2023; Kerimov et al., 2024, 2025; He et al., 2025; Gupta, 2024) and approximation algorithms
(Aouad and Saritag, 2020). In particular, the all-time regret notion implicitly deals with uncertain
disruption by guaranteeing near-optimal performance throughout the time horizon. Our work
studies the same trade-off in the context of online selection by explicitly introducing a disruption
indicator, and while there are differences across these stochastic models, we hope that the modeling
we propose in this work can be leveraged to study this fundamental tension under disruptions such

as match rejections and item returns.

3 Preliminaries

In this section, we present some preliminaries needed in the remainder of the paper. All missing
proofs in the main body are deferred to the appendix. The value maximization problem faced by
the DM can be solved by means of stochastic dynamic programming. For any n > 1, a disruption
parameter p € (0,1), a partial recovery parameter ¢ € [0, 1], and a distribution F' € F, let D;(p, F)

be the optimal value obtainable from the sequence (X;) when 7 — 1 < n values have been

n
=i
observed already (i.e., the i*® value is ready to be observed next) and no disruption has occurred

yet. Then clearly D, 1(p, F') = 0, and for i < n, we have

Di(p, F) = max{ Pr[X < 7;] Diy1(p, F) (DP)

7,20

+PrX > 7] (1= p)(EIX | X 2 7] + Disa(p, ) + pCEIX | X 2 7)) }.

By solving (DP), one can obtain an optimal algorithm that at time ¢ € [n], selects the observed
value Xj; if it is at least 7;, where 7; is the maximizer of (DP). The next proposition states that it

is optimal to use a non-increasing sequence of thresholds, i.e., 7 > -+ > 7,.

Proposition 3.1. There exists an optimal algorithm for the OS-UD problem that employs a non-

increasing sequence of thresholds.

Next, we provide two characterizations of v(0PT) in terms of the inverse of F' and its derivative.

These characterizations will be useful in the analysis of NA and AD classes.

Proposition 3.2. The value achieved by the optimal algorithm can be characterized as follows:

1 1
v(0PT) = / (Bu(p.v) + C[1— (1 — vp)"))r(v) dv = / FU-dOp.ade, (2



where By(p,v) := Emin{X, D — 1,n}] with X ~ Bin(n,v), and r(v) > 0 is a function such that
Jyr(@)dv=F~'(1—u)* and 91(1)( p,q) = n(l—(1-Cp) (1 —pg)" .

Both representations of v(0PT) originate from its characterization in (1), which express the value

as the expected sum of order statistics up to the disruption point:

n J—1
v(0PT(I)) = Pr[D > n)| ZX + ZPr[D =il E ZX@ + CX(j)] i
j=1 i=1

For each term E[X;], two equivalent characterizations are available: (i) the tail-integral represen-
tation, where the integrand is the survival function, or, (ii) the density-based representation, where
one starts from the distribution of order statistics, performs a change of variable into quantile form,
interchanges integrals, and applies the binomial theorem. The formal proof is given in §A.

Finally, we reproduce the system of ordinary differential equation (ODE) introduced by Hill and
Kertz (1982), colloquially known as the Hill and Kertz equation. This will be used in the analysis
of the AD class. We want to find a solution y : [0, 1] — [0, 1] to the following ODE:

(1) = () (In(y(t)) — 1) (01 _ 1)

0)=1, i t) =0.
y(0) =1, limy(t)
This system has a solution if and only if 8* ~ 0.745, where 6* the unique solution to the integral

equation in Theorem 1.2.

4 The Class of Non-Adaptive Algorithms

In this section, we analyze the performance of non-adaptive threshold algorithms for ¢ = 0. We fully
characterize the competitive ratio achievable by this class, presenting an optimal algorithm that
guarantees a competitive ratio of at least 1 — 1/e for any input to the OS-UD problem. Moreover,
we show that no non-adaptive algorithm can achieve a competitive ratio exceeding 1 — 1/e 4 o(1)

in the worst case. Together, these results imply Theorem 1.1.

4.1 Quantile-Based Non-Adaptive Algorithm

Our algorithm is quantile-based. It receives a quantile ¢ € [0, 1], sets the threshold 7 = F~1(1 —q),
and selects any value of at least 7. For any n > 1, we denote the algorithm with quantile g, by

ALG? and its expected value by v(ALG?"). The main result of this section is the following:

v(ALGIn)
v(0OPT) > 1=

o =

Theorem 4.1. For any n > 1, if g, = min{1, 1/pn}, we have

3The existence of r(v) is guaranteed by our assumption of F~! being differentiable and strictly decreasing.



Theorem 4.1 immediately implies fyp NA > 1_1 /e, proving the first part of Theorem 1.1. The proof
relies on two key lemmas. The first lemma provides a lower bound on v(ALG?")/v(0OPT) that is

independent of F'.

Lemma 4.2. For anyn > 1 and p € (0,1), we have

v(ALG™)  (1-(—gp)") . f p 1
o(OPT) — P {1 -(@=p) qn”} ’ @

for any instance of the OS-UD problem.

Let ni", denote the right-hand side of (3). The next lemma provides a useful monotonicity property.

Lemma 4.3. For any n > 1, let ¢, = min{1,1/pn}. Then, we have 0, > nglflfp. Furthermore,

lim, 0o miy =1 — 1/e.

With these two lemmas, we are ready to provide the proof of Theorem 4.1. Indeed, for any k£ > 1,
we obtain v(ALG?")/v(0OPT) > ni", > nZTkkp, where the first inequality simply follows from Lemma
4.2, and the second inequality follows from applying the monotonicity in Lemma 4.3 iteratively k
times. Thus, we obtain v(ALG?")/v(0PT) > limg_,00 nz’fkk,p =1—1/e for any n > 1. We use the rest

of this subsection to prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. Fix n > 1, and we drop the index n from quantile for simplicity. We start

characterizing v(ALGY) as follows:
v(ALGY) ZPrBlnnq =a <Zp (1—p (z—l)—l—a-(l—p)a>-E[X]XZT]
fo 1 — w)du fol r(v) min{v, ¢} dv

fT x- f(z)de B B
W = An(q,p) 7 = An(q,p) q ) (4)

= Au(q.p)

where the second equality uses A,(q,p) = (1—p)-(1 — (1 — gp)") /p, which is a simplification from
the preceding expression. Note that A,(q,p)/q denotes the expected number of items accepted
by the algorithm at quantile at most ¢, and E[X | X > 7] represents the expected value of an
item whose value lies above the threshold 7 = F~1(1 — ¢). Hence, v(ALG) can be interpreted as the
expected number of accepted items at quantile ¢ multiplied by the expected value of such an item; the
third equality uses the assumption that F is strictly increasing and substitutes F'(x) by 1 — u, and
the last equality is achieved by setting F~(1 — u) = ful r(v) dv, which is valid by our assumption
on F. Then, per Proposition 3.2, we have
v(ALGY) _ (Au(g,p)/q) Jy r(v)minfo,qydv - Au(g,p) - min{v, g}

= > inf —=& . )
v(OPT) fol By (p,v)r(v)dv — ve0,]] Bn(p,v) - q (5)

For v > ¢, the ratio inside the infimum becomes A, (p, q)/B,(p,v) which is a decreasing function

10



in v. For v < g, the ratio now becomes

Bn(p,v) - q ¢ i,p-(1-p)imt 302 Pr(Bin(n,v) 2 ]+ (1 - p)" - nw

In Lemma B.1, we show that (6) is non-decreasing in v. This implies that the infimum is attained

either when v — 0 or v — 1. Thus,

v(ALGY) .. Anlg,p)v . An(p.q)

o(opT) = ™0 {35% Bu(p, )4 > Bulp ) }

(1-p)(1—(1—gp)") .min{ 1 1 }
D E[min{D — 1,n}]" (1 — p)gn

where the second line follows by a straightforward calculation of the corresponding limits. Here
D ~ Geom(p), and a direct calculation shows that E[min{D —1,n}] = (1—-p)(1—(1—p)")/p. This

concludes the proof. O

Proof of Lemma 4.3. We analyze three cases: (i) pn < p(n+1) < 1; (ii) pn <1 < p(n + 1); and
(iii) 1 <pn < p(n+1).
—(1-p | _ 1=-(1-p)"

pn pn
first equality follows simply by definition, while the second equality follows from the Bernoulli’s

, where the

Case (i). Here, we have ¢, = ¢p+1 = 1. Then n}hp = min {1, 1

inequality (1 —p)™ > 1 — pn. From here, it is immediate that 7} 1p < n%’p.

1-(1-p)"
pn

1 n+1 1 1 n+1
qn+1 — 1— 1— 3 1 - =1 1—
Ly ( n+1> mm{ ’1—(1—p>n+1} < n+1)

with calculations analogous to the previous case. Note that the function (1 — (1 — p)™)/p =

Case (ii). Here, we have ¢, = 1 and ¢,4+1 = 1/p(n +1). Then 7", = , and

n—1

7= (1 — p)¢ is decreasing in p. Thus, we have p € [1/(n + 1),1/n], and

1 n 1 n+1
77%7p21—<1—n) 21—(1—n+1) = i,
qn

Case (iii). In this case, we have g, = 1/pn and gu41 = 1/p(n +1). Thus, i, =1— (1—2)"

_1
n+1

already proved 7", > 7727.1:11,27' To conclude, for n > 1/p, we have g, = 1/pn so that lim, e i =

limy ool — (1—2)"=1-1. O

n

dn+1

and 7,7, =1— (1 — . As a byproduct of the analysis from the previous case, we have

4.2 Upper Bound on Competitive Ratio

In this subsection, we prove fy]lf? < 1—1/e to complete the proof of Theorem 1.1. To do so, we

provide a family of instances with competitive ratios approaching 1 — 1/e. For this hard instance,

11



we define the distribution through

. a
F(u) = ;15{0}(10) + azl(o,8/n) (1), (7)

where a1, a2, € R, 8 < n, dj0y(u) denotes the Dirac delta function centered at u = 0, and Ig(:)
denotes the indicator of the set S. By approximating d;(-) via nQ]I[OJ /m2) (), we can easily find
a distribution F such that F~'(1 — u) ~ F(u); however, we will provide the calculations over F
as the calculations are cleaner. In short, F' defines a three-point distribution: among n draws, we
expect approximately one high item with value of ain, 8 moderate items with value of as, and the
remaining items with value of 0. With independent disruptions of probability p, the expected payoff
of the j' accepted item is scaled by (1—p)’; thus, taking many moderate items yields geometrically
decaying value, while waiting for the single high item risks forfeiting most moderate items. We
formalize this trade-off below. Denote by Poisson(/3) a Poisson distribution with parameter 5. We
use the following two lemmas to characterize the value of the optimal algorithm and the value of

the single-threshold algorithm.
Lemma 4.4. When n — oo, v(0PT) — a1(1 — p) + a2 X272, Pr[Poisson(B) > j](1 — p)’.
Lemma 4.5. Let A = A" > 0 be a solution to the equation
e P (al + a1p\ + agp)\2) =aqa. (8)
As n grows large, the expected value of ALGM™ converges to

(1—p)(1—e PP
Bp

lim v(ALGM™) = max {(1 —p)ai,

n—oo

(a1 + a2), 01} ;

where C = %(al + agX*) if \* < 8 and C1 = 0 otherwise.

Let f(ai,a2,B,p,A) == v(ALG%)/v(OPT). We aim to bound ming, o, 3, maxy f(ai, a2, 5,p, A),

which will provide an upper bound on the competitive ratio for non-adaptive algorithms.

Theorem 4.6. Given any ¢ > 0, for given inputs ay,as, B, p, A which satisfy aa = p(e — 2)ay, and
B sufficiently large, we have U(ALG%)/U(OPT) <l-1/e+e.

Proof of Theorem 4.6. Given 8 > 1/p sufficiently large, plugging in as = p(e — 2)a; into (8) we
obtain the equation e=*"? (a; 4+ a1pA* + p*(e — 2)a1 (A\*)?) = ay, which holds if and only if A* = 1/p
for \* > 0. Note that when A\* = 1/p, through direct comparison and monotonicity analysis, we

get

Cy > max{(l — p)ay, 15_]?]9(1 — e ) (ay —i—az,@)} :

Consequently, for the input parameters aj,ag, 8, p, A satisfying as = p(e — 2)a;, and g sufficiently

large, the value A\ = 1/p serves as the maximizer of the function f(ai,az,S,p,A). Then for any
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given € > 0, we have

v(ALG™) _ (L=p)- (1=1/¢) - (a1 +a2/p)
v(0PT) ~ a1(l —p) + a2 > 72, Pr[Poisson(B) > j](1 — p)I-

Note that the desired upper bound of 1 — 1/e + € is only achieved when the necessary condition of
521 Pr[Poisson(3) > j](1 —p)~1 > 1/p—eis met. We can find a sufficiently large 3 that ensures
the validity of the above inequality. The process of finding such a 8 consists of the following two
steps:

(i) Find an integer Cy such that (1 —p)©2 < ep/2. Cy could then be set as [log; _, (ep/2)].

(ii) Using the integer Co found in the previous step, we find 5* > A such that Pr[Poisson(8*) >

C3] > 1 —ep/2. The existence of such a §* is guaranteed by the intermediate value theorem.

Using conditions (i) and (ii) above, we recover the necessary condition:

iPr[Poisson(ﬁ) > 41 —p)y~t> Z (1 — 7> —p)yt (1 _ ?) ﬂ

i=1 P

1
—5+€—p27 E. O]
4 —p

|
/N
—
|
™
o |3
N—
VR
"N
|
N ™
N—
| =

5 The Class of Adaptive Algorithms

In this section, we focus on adaptive algorithms. In §5.1, we formally define our algorithm and
present the proof of Theorem 1.2 to show that adaptivity is key, and one can improve the competitive
ratio from the non-adaptive case in the limit. In §5.2, we present the proof of Theorem 1.3 to provide
an upper bound on the competitive ratio, and we show that our derived asymptotic competitive

ratio is tight.

5.1 Quantile-Based Threshold Algorithm

For each i = 1,...,n, our adaptive algorithm samples a quantile ¢; € [0, 1] from a density function
with a support in [g;_1,¢;], where 0 = g9 < €1 < --- < &, = 1. Then, if the observed value X; is
at least F~1(1 — ¢;), the algorithm selects the value; otherwise the value is rejected. Denote this
algorithm by ALGAP.

The construction of the densities over each interval [g;_1,¢;] follows a similar approach to the
one outlined in Correa et al. (2021); Perez-Salazar et al. (2025). We take some time to explain the
importance of these densities and the challenges involved in applying the method from Correa et al.
(2021). From the second characterization of v(0OPT) in Proposition 3.2, the function gﬁbo) (p,q) =
(1—p)n(1—pq)™~! is the derivative of A, (p,q) = E[min{Bin(n,q), D—1}], i.e., the derivative of the
expected number of values OPT gets at quantile ¢. The goal of our analysis is to show that, for every

q € [0, 1], the derivative of the expected number of values at quantile ¢ that the algorithm accepts
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is at least 6,, - g,(LO) (p, ). If this condition holds, then we can guarantee that v(ALGAP) > 6,, - v(OPT).
This analysis is quite stringent, as it requires specifying a valid density for every q € [0,1]. However,
the method from Correa et al. (2021) applied to the OS-UD probem only provides a density over
the interval [0, p], leaving (1 — p, 1] unassigned. To address this limitation, we use a direct approach
and construct densities that cover the interval [0, 1] completely in such a way that the competitive
ratio of ALGAP converges to 6*.

We now explain the density functions for ALGAP. Let 0 = g9 < e;. For 6,, > 0, consider the
following function £, (p,q) == —6 ]I[£0751](q)(g7(10))’(p, q)/(1 —p). Note that 51, > 0. If we want
to sample g1 from [ n(p, -), then we must have 1 = fol B1,n(p, q) dg, which happens if and only if
n@ =1— (1 —pe1)" . From here, €1 is decreasing in 6,,; thus, there is #,, such that ey < 1. In
general, let B n(p, q) = —Onl|c, | ] (q)(gﬁlo))’(p, q)/(1—p) such that the following system is satisfied
for 0 = g1 <9 < --- < g <1, and for the largest k possible:

1
/O Bin(p,q)dg =1, 9)
1 1
/ Bit1n(p,q)dg = / Bin(p;q)(1 — pq) dg Vi < k. (10)
0 0

We already know that we can satisfy this system with & = 1. We seek to satisfy this system for
k =n and ¢, = 1. Then, our densities for ALGAP become S;,,(p,q)/ fol Bin(p,q)dg for all i € [n].

Lemma 5.1. There is a unique 6,, > 0 such that the system (9) — (10) has a solution for k =n

and g, = 1.

We present the proof of Lemma 5.1 after establishing the following guarantee on the competitive
ratio of ALGAP.

Theorem 5.2. Let 0,, > 0 as in Lemma 5.1. Using the densities B/ fol Bin(p,q)dq for ALGAP

gquarantees

U(LGAD) > (1 _ (lp)n_1pn> -0, (11)

v(0PT) 1-(1—-p)
Proof of Theorem 5.2. Let r; be the probability that the algorithm observes X;, i € [n]. Then, we

have

v(ALGAP) = Zrz/ f _Binpw) 1—p) /OO xdF(z)du,
0

B@n F=1(1—u)

where B »(p, u / fo Bin(p,q)dg is the conditional adaptive density of the quantile used when ob-
serving X;, and the inner integral (1 — f F1(1—u) x dF(z) is the expected marginal contribution
at that step given quantile u, with (1 — p) accounting for survival upon acceptance. Via induction,

we have r1 = 1, and for ¢ > 1, we have r; = fol Bi—1.n(p,q)(1 — pq)dg. Hence, using the system
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(9) — (10), we obtain
n 1 q
0(a2e) =3 / Bualpo)-(1=p) [ P71 =) dgda (12)

_9/F (1-9)99(p,q dq—e/ '1-¢) n(l-p)"dg, (13)

where (12) follows from a change of variable and using r; = fo Bin(p,q)dg for i > 1. Then, using

a ratio comparison, we have

Jy P11 = 9)g” () dg _ (1—p)""'pn _ 1 (14)
Jo P11 =g (p,q)dg ~ 1A —p»

and applying this bound in (13), we obtain

_ \n—1 n 1 _ \n—1 n
V(ALGAP) > 0, <1 - (11—(?—19])9"> /0 F(1—w)g (p, ) du = 6, - (1 - (11_(1’1)_}?)]””) v(0PT),

which concludes the proof. O

We now present the proof of Lemma 5.1. The idea is to generalize the monotonicity of ; as
a function of 6,, to ¢; for all <. To this end, we first present an alternative characterization of the
system (9) — (10).

Proof of Lemma 5.1. We start with an intermediate result. Given a fixed k < n, we claim that for

all i < k, the following recursion holds:

1 — €i—1
9 (p.20) = 90 (psir) = = —p (62-_1 -9 (p.eim1) —/0 9 (p. ) dQ> . (19)
We proceed by induction. The base case i = 1 can be verified easily. Assuming that (15) holds for

some i < k, by the fundamental theorem of calculus, we have

€i+1 €i
3O, ei1) 9V (p, i) = / (99 (p,q) dg = / (Y (p.q)(1 - pg) dg (per (10))

i—1

= / (6 (p,q)dg — p / (6) (p, q)q dg
Ei—1 &

i—1

. )
= 99(p, i) — 9O, ei1) —pei - 9O, &) + peic1 - 9P (p,gia) +p/ 99 (p,q)dq
Ei—1
1 _

€
= P +p/0 9O, q)dg — pei - g0 (p, ),

where the last equality comes from the induction hypothesis.
Note that from (15), we obtain that ¢; < ;41 and (géo))’(p@iﬂ)egﬂ = 19;21’ + (ggo))’(p,ei)(l -

pe;)eh, where the derivative is with respect to 6,,. From here, we see that all ¢;’s are decreasing in
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0n. Thus, by making 0,, sufficiently large, we can sequentially define €x11,er42, -+ < 1, until we

reach ¢, = 1. This concludes the proof of Lemma 5.1. O

Asymptotic Analysis. We now show that liminf, . %/?,;I?,o > 0% ~ 0.745. Let f,(p,\) :=
9%0) (p,A\/n)/(1 — p)n. Then, (15) becomes
fn(p’)\z) _fn(pa)\i—l) 1

1/n = ~o. —-p <A¢—1 (P Ni) — /OAH fn(p,w)dw) , (16)

where \; = neg; for all i. Note that 6, € [0,1]. Then, there exists a subsequence that converges
to some 6 € [0,1]. For simplicity, we abuse notation and denote this subsequence by 6,, so that
0, — 0 € [0,1]. Now, doing a linear piece-wise approximation of \; via a function A, (z) such that
Ai = A\p(i/n) and taking the limit in n of (16), we obtain

1 Alz)
(o, M) = —5 P (x\(ﬂf) - f(p, M=) — /O f(p,w)dw)

where f(p, \) = lim,, 00 fn(p, \) = e *P. Furthermore, we have conditions A(0) = 0 and lim,_,1 A(1)

Az)

+00. Performing the change of variable y(z) = e *\*P| we obtain the following system:

M@=1—2+WW@%ﬂM@%

y(0) =1, limy(z) =0.

r—1

This is exactly the Hill and Kertz equation presented in §3, which has a solution if and only if
= 6* ~ 0.745, which yields that lim inf, 6, = 6*. Finally per Theorem 5.2, for any p € (0,1), we

have .
(1 _p)n— pn) _ 9*

.. AD ..
> . Sl A s
it = - (1 S

5.2 Upper Bound

In this subsection, we prove Theorem 1.3 to establish that the lower bound derived in the previous
section is optimal. Fix p,e € (0,1) and n sufficiently large so that n > {—w—‘. We define
the following distribution through F(u), where y(-) is the solution to the Hill and Kertz equation:

Py = —2 5 (u)—p/1€ s 1)
T U= Y T T ey y/(s) O

Similar to the hard instance presented in §4.2, the distribution comprises a spike when w is close
to 0, together with a monotonically decreasing continuous component. Consequently, the largest

contributions occur for small u, and the quantile decays rapidly thereafter. The instance is designed
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to induce a tension between capturing more mass immediately and preserving continuation value
in the presence of disruption—induced discounting. We analyze this trade-off through a continuous
Bellman equation for any online optimal algorithm, where the optimal control equates marginal
benefit and discounted continuation cost. What follows is the formalization of this intuition.

Given € > 0, denote the value of the optimal algorithm by v°(0PT) under F(u) that is defined
above. The following proposition provides a characterization of v®(0PT).

Proposition 5.3. v°(0PT) = 6* — 01_8 y%(s) (1 - <1 + W)n) ds.

We then characterize the maximum value that can be obtained by any online algorithm. Consider
the following dynamic program, where for any n > 1 and p € (0,1), DS is the value at observing
Xi, 1 € [n+ 1], with the convention X,,+; = 0:

q _
DS = sup {(1—p> / F(u)du+<1—pq>Dfﬂ},Vie[n] and  Di,, =0. (1)
¢€[0,1] 0

In particular, we are interested in analyzing the dynamic program solution D? for all i € [n]. We
now examine its continuous approximate counterpart (denoted by d(z)) through Lemma 5.4 and
link it back to discrete valued DY via Lemma 5.5. In order to find d(0), we rewrite (17) from an

ODE perspective. Consider the following Bellman equation:

“d(@)= sup { [ v —pud<x>}, (18)

wel0,00]

where h(u) := 0" - 610y (u) — pfyl_l(e_pu) (1/y'(s)) dsI(g,1)(w). In what follows, we show that for any
x € (0,1], (18) can be satisfied by

P e s
d(a:)—/x y’(s)d d p= PR (19)

Lemma 5.4. (19) provides a unique solution to the Bellman equation (18), when x € (0, 1].
Next, we connect the continuous dynamic program value (denoted by d(i/n)) with D5.

Lemma 5.5. Fiz o € (0,1) and n > —log(y(1 — 0)). Let

 no —log(y(1 —0))(1—o0)
7= T 0) (n + log(y(1 —0))) (20)

Let D := (1+14) - d((1 = 0)i/n)). Then for any i € [n], we have D < D? < D;.

Proof of Lemma 5.5. The first inequality follows from observing that F (u) is a positive, non-
increasing function in e. Thus, per (17), it holds that D < DY for any ¢ > 0. To prove the

second inequality, we use the following claim.

Claim 5.6. For any q € [0,1], we have (1 —p) [{ F(u)du+ (1 - pqg)Dit1 < D;.
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Now we are ready to show the second inequality. We proceed by induction. Note that for some

€ [0, 1], the Bellman equation for DY is satisfied with equality:

@
D? =(1 _p)/ Fu)du+ (1 — in)D?+1
0

% _ -
<(1- p)/ F(u)du+ (1 —pg;) DY,y < D; (per induction hypothesis and Claim 5.6)
0

O

Finally, we compare the value of the dynamic program and the optimal algorithm. Specifically,
we consider the ratio Dj/v*(0PT), and analyze its behavior in the asymptotic regime. Noting that
D; < DY < (1+n,)d((1—0)/n) and 1, — /(1 — o) when n — oo, we have

1 1
f D () -d(—o)/m) 1 Jo g
im ———— < lim =
n—o0 v¢(0PT) ~ n—oo v¢(0PT) S l—ogr _ 1 —e 1= ?(/()S)d
%

where in the last inequality we use Proposition 5.3 and Lebesque’s dominated convergence theorem.
This bound holds for any o € (0,1). Thus,

1 1
Jo —ymds

* 1—e 1—-y(s)
0 0 7) ds

AD
7p,0 <

for any € € (0,1). Then letting ¢ — 0, we see that the right-hand side tends to * per (Liu et al.,
2020, Theorem 3.11), which concludes the proof of Theorem 1.3.

6 Partial Recovery

In this section, we examine the OS-UD problem under partial recovery with parameter ¢ € [0, 1].
The proofs of Theorems 1.1 and 1.2 turn out to be analogous to those in the case ( = 0. For
completeness, we present the main steps of the arguments, while omitting the full details to avoid

redundancy.

6.1 Non-adaptive Algorithm
We first characterize the value of the non-adaptive algorithm similar to Lemma 4.2.
Proposition 6.1. We have v(ALG?) = (An(g,p) + ¢ (1 — (1 — gp)™)) (fo v) min{v, q}dv) /q.

Proof of Proposition 6.1. Relative to (4), the only change is that a disruption upon the i-th accep-
tance yields a fraction ¢ of the last item; hence, an additive term ( is included when a disruption

occurs:

v(ALGY) = ZPrBlnnq = al (Zp ) HGE— 1) +¢] +a(l - ))E[X’XZT]

a=1
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fTOO xf(x)dz

= (Anla.p) +¢ Y PrlBin(n,q) = a (1= (1)) B s

a=0
fo v) min{v, ¢}dv

(A (¢,p) +C[1 = (1 —gp)" ) . ,

where the last equality follows by the same procedure as in the proof of Lemma 4.2. ]
Combining Propositions 3.2 and 6.1 yields the following ratio between v(ALG?) and v(OPT):

vaLet)  (An(g:p) +¢(1= (1 —ap)")) (fo r(v) min{v,q}dv> /q
v(0PT) fol (Bn(p,v) + ¢[1 — (1 —vp)]) r(v)dv '

The same monotonicity arguments as in the proof of Lemma 4.2 imply that the infimum is attained

when v — 0 or v — 1. Consequently,

ofae’) [ (An(g,p)+¢(1— (1 —qp)™))v lim (An(g,p) +¢(1— (1 —qp)™))

v(0OPT) — v—0 (Bn(p,v) + C[l - (1- vp)"]) q v—1 (B (p,v) + C[l - (1- vp)"])

_(A=p+pO)(1 -1 —aqp)") _min{ 1 1 }
p (A=p)/p+JA-Q=p)) 1-p+Cp)gn [’

This matches Lemma 4.2 by canceling common factors that appear both in numerator and denom-

inator. Similar to Lemma 4.3, the same 1 — 1/e bound holds when no recovery is allowed.

Remark 6.2. For the upper bound, we may reuse the distribution we defined for a hard instance
from §4.2. Since both v(ALG) and v(OPT) are scaled by the same factor (1 —p+p¢)/(1—p)), the

ratio is preserved, and the remainder of the analysis follows.

6.2 Adaptive Algorithm

We first characterize the value of the adaptive algorithm in the partial recovery case, in parallel to
Theorem 5.2. Recall that g(C)( q) =n(1—(1-¢)p) (1 —pg)" . Define the adaptive scheme via
B (p.q) = —al, , y(@)(g @) (»,q)/(1 — (1= C)p), where 0 = & < &3 < -+ < &), < 1 is chosen
for the largest k possible so that

/ﬁlnp, dg =1, /anp, dq—/ 5,np, —pq)dq, Vi<k.

Using the expression for v(0PT) from Proposition 3.2, we obtain the following:

Proposition 6.3. v(ALG*P) = 6, v(0PT) — 6, fo 'M—g)n(1—-(1-=¢p) (1—p)"'dg.
The proof is straightforward with v(ALGAP) = "7 | fol 51(2 u) (1 — ) f . F*1(1 — q)dgdu and
using the system of recursions above. Substituting v(0PT) fol (C)( ,q) dq yields
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Proposition 6.3. Thus, the ratio between v(ALGAP) and v(OPT) can be written as

v(ALAY) O [y F1 1= 09 (p.a)da — 0y F (1= @) (1= (1= O)p)(1—p)" g

v(OPT) fol FH(1 - Q)g§§) (P, q)dg

(21)

The conclusion of Theorem 5.2 continues to hold, since the ratio comparison in (14) is unchanged
after canceling out (1 - (1- ()p). Note that the connection still holds, where g(o( ,q) is the
derivative of (An (¢,p) + ((1 — (1 —gp)" )), i.e., the derivative of the expected number of values OPT
gets at quantile at most ¢ plus a fraction ¢ recovery. From here, we adopt the same analysis from
the base model, and we observe that the competitive ratio expression is unaffected. The proof is

analogous to the base case and is therefore omitted for brevity.

Remark 6.4. For the upper bound, we redefine the distribution F(u) in §5.2 as:

5 0*

= =g o) -

ds 1
1—p+pC/ (e=pnu) o)
Under this definition and the new partial-recovery dynamics, the adaptive and optimal algorithms

attain the same value, and the remainder of the analysis follows unchanged.

7 Maximizing the Largest Value Until Disruption

In this section, we consider the following variant of the OS-UD problem: if S represents the
set of indices of values selected by ALG before a disruption, then the value of the algorithm ALG is
Umax (ALG) = E[max;es{X;}]. We compare the value of an algorithm against the optimal clairvoyant
algorithm OPT that knows the values upfront but not the disruption; hence, it is immediate that
Vmax(0PT) = (1 — p)E[X(1)]. Our main result is a constant competitive ratio, summarized in the
following result.

_e—PA
PA

max( )

> 1
e (0PT) 2 MAXA<n min {

Theorem 7.1. For anyn > 1, supyinfper - 1= 6_)‘} >1-1/e.

To prove this result, we utilize a non-adaptive single-threshold algorithm that is quantile-based.
Similar to our analysis of NA in §4, we can provide an exact formula for vy ax(ALGY) where ALG? is
an algorithm that receives a quantile ¢ € [0, 1] and uses the threshold 7 such that ¢ = Pr(X > 7).
We provide a detailed proof in §7.1.

_e—PA

The lower bound maxy<j, rnin{1 ,1—e” } converges to 1 — e MP) as n — oo, where
A = A(p) is the unique solution to 1 — e™”* = pA(1 — e™*). The following result shows that this

lower bound is essentially tight for the class of non-adaptive algorithms.

Proposition 7.2. For any non-adaptive algorithm ALG, infpcr ,>1 % <1 —e M0,

To prove this result, we provide a hard instance similar to the one provided for the class NA
in §4. We defer the details to Appendix D.1. In Figure 1, we present the plot of 1 — e *®). We

note that, numerically, it is a decreasing function of p.
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Figure 1: Competitive ratio lower bound computed from (22) for p € [0, 1).

Remark 7.3. We can consider an alternative model where S is the set of all indices of values
selected by ALG including the index where the disruption occurs. Our results remain valid for p < 1.
We omit the details for brevity.

Remark 7.4. We note that supy g Umax(ALG) can be computed via dynamic programming. However,
any natural formulation must track both the current retained mazximum = and the remaining number
of items i. The optimal policy takes the form of a threshold policy T; ., yet characterizing or even
approzimating these thresholds to allow a competitive analysis remains a challenging problem, which
we leave as an open question. A similar challenge is faced in prophet inequalities, where multiple
items can be selected (e.g., see Assaf and Samuel-Cahn (2000); Harb (2025)).

7.1 Proof of Theorem 7.1

We use following two lemmas to characterize the expected values of the optimal algorithm and the

single-threshold algorithm using the function r(v) > 0, where ful r(v)dv = F~1(1 — u).
Lemma 7.5. We have vpnax(0PT) = (1 — p) fol(l —(1=v)")-r(v)dv.

The optimal policy simply targets the largest value. With probability 1 — p the item is not
disrupting, and the expected collected value equals E[X (1)]; hence Lemma 7.5 follows immediately
from Claim A.1.

Lemma 7.6. We have vmax(ALG?) = Y7 Pr[Bin(n, q) = d (ZZ;ép(l —p)Fup + (1—p)e ,ua), where
= Emax{Xy,.... X;}| X1 >7,....X; > 7] = (l/ql) fol (ql —(¢— min{q,v})l) r(v)dv.

The proof follows a similar analysis to Lemma 4.2, but the gain from an accepted item depends
on the realized disruption horizon; instead of obtaining E[X | X > 7] from each acceptance, the

expected value is E [max{Xi,..., X;} | X1 > 7,...,X; > 7|, where [ is the number of selections

survived without a disruption. Full proof for Lemma 7.6 is provided in §D. Let
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-p[1-1-q"), if v > g,
Wire(v) =
sV} =13 (1-p) (v/g)
p+(1-p)(v/q)
We reorganize the expression given in Lemma 7.6 into a single integral and obtain a representation
of Umax(ALGY) using the shorthand notation Wyig(v):

1= (-a-(1-pv)"], fo<v<q

1
Umax (ALG?) :/ Wire(v) r(v) do.
0
Finally, we compare vpax(ALG?) and vpax(0OPT):

Umax (ALGY?) fol Wiare(v) - r(v)dv

Umax (OPT) (1= p) [ (1 = (1= v)") - r(v)dv

> min ¢ inf (L —p) (v/q) [1—(1—qp—(1—p)v)n} in (1_p)[1_(1_q)n]
- el p+(1—-p)(v/e)  (L=p)(L—-(1—0)") Tvelg] (L-p)(1—(1—v)")

> min ¢ lim (v/q) [1 B (1 —e—(1-p) U)n} lim L-(1-q"

- v—=0 p+ (1 —p) (v/q) (1—-(1—=v)™) To11— (1 —o)n

o [1-(—gp)" n fl—e -
—mln{W,l—(l—q)}Zmln{p}\,l—eA}. (22)

Here, the second inequality uses the monotonicity of both functions (we prove that the first term

is non-decreasing in the Lemma D.1), and the final inequality follows by substituting ¢ = A/n.

8 Final Remarks

We introduced the Online Selection with Uncertain Disruption (OS-UD) problem, which captures
unexpected disruptions resulting from serving requests. We first provided a non-adaptive single-
threshold algorithm with a tight competitive ratio of 1 — 1/e. We then analyzed the general class
of adaptive threshold algorithms and showed that an asymptotic competitive ratio of 6* ~ 0.745 is
attainable, and this is tight.

Even though in this work we focus on the case of fixed disruption probability p, we can use the
techniques developed for the non-adaptive single-threshold algorithms to analyze a rare disruption
regime, in particular, the case when p = a/n with a < 1. Indeed, letting ¢ = 1 in Lemma 4.2
and using the fact that 1 — x < e for all x € R, we obtain the following lower bound on the

[0
PI-(I—a/n)"
than 1 — 1/e for a € [0,1), improving the ratio from the non-adaptive case for fixed p. Moreover,

competitive ratio: <¥) min {1 } = (1 — e ®)/a. This competitive ratio is larger

this asymptotic competitive ratio converges to 1 as a — 0.

It remains open the question of determining a constant lower bound for 77‘?? ¢ for all n > 1.
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Using the linear programming approach in Perez-Salazar et al. (2025) (see also Jiang et al. (2023)),

we can approximate 'y{jpD ¢

’y;;\? ¢ converges to 0*. We also note that, for finite n, when the disruption probability is close to

numerically (see Figure 2). We empirically observe that as n grows,

1, the problem aligns closely with the classical single-selection i.i.d. prophet inequality problem.
Indeed, although OS-UD allows multiple selections, if p = 1 — ¢ with € ~ 0, the expected gain
beyond the first selection is multiplied by O(£?). Therefore, this regime yields limited new insight,

as it reduces to the single-selection case.

1.004 — n=10
n= 20

o 0.95 A —— n=40
= | N Asymptotic Competitive Ratio
o
o 0.90 +
2
L 0.85 {
£
S

0.80

0.75 — =

0.0 0.2 0.4 0.6 0.8 1.0
Probability p

Figure 2: Estimated competitive ratios using linear programming formulation in Perez-Salazar et al.
(2025) for p € [0, 1].

We have so far focused on the i.i.d. case of the OS-UD problem, where all values share the
same distribution. It is natural to consider the case, where the values remain independent, but are
not necessarily identically distributed. In this case, using an approach akin to contention resolution
schemes (see, e.g., (Alaei, 2014)), we can prove a competitive ratio of at least 1/2, and this bound
is tight (see §E).

In this paper, we modeled the disruption as a memoryless process. A natural extension would
be to consider broader classes of disruption processes. For example, the disruption probability
might increase as more values are being accepted, modeling a system that wears out over time;
conversely, it could also decrease, representing a system that becomes more reliable over time.
However, analyzing such variants is non-trivial, as optimal algorithms must account for the number
of selections made—a known challenge in multiple-selection problems and an active area of research
(e.g., see Alaei (2014); Jiang et al. (2023); Brustle et al. (2025)).

Our paper sheds light on quantifying the price of having limited information, and we attempt
to study the value of flexibility by showing how much adaptivity improves the competitive ratio
over non-adaptive algorithms. An alternative way to measure the value of flexibility would be to
benchmark non-adaptive algorithms directly against the optimal online policy. While conceptually
compelling, this is analytically delicate; it remains an open question to establish such tight and
distribution-free comparisons by exploiting the structure of the optimal online policy characterized

by a dynamic program.
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Lastly, OS-UD assumes a single disruption event that terminates service with partial recov-
ery on the last value. Another interesting direction is to consider models, in which a penalty is
introduced on the last acceptance if a disruption occurs—for example, a fixed charge ¢ > 0 or a
linear penalty ¢ Xjast, akin to those studied in knapsack settings (e.g., see Dean et al. (2008); Fu
et al. (2018)). In such cases the realized payoff may become negative, and the standard compet-
itive benchmark can be ill-posed. To obtain meaningful guarantees, one should adopt alternative
performance criteria, e.g. regret-type guarantees such as minimizing E[v(0PT) — v(ALG)]. These
formulations are natural in revenue-management applications (e.g., airline overbooking or ticketing
with compensation for denials), where the objective is expected revenue minus penalties subject to

service constraints.
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A Missing Proofs from Section 3

Proof of Proposition 3.1. First, note that 7,, = 0, since accepting always brings a non-negative
value. Assume that an optimal algorithm, denoted by ALGOPT, has 7; < 75,1 for some i € [n—1].
Consider the following alternative algorithm ALGALT that swaps these two thresholds, i.e., the
alternative algorithm accepts X; with threshold 7,41, accepts X;41 with threshold 7;, and rest of
the thresholds remain unchanged. Denote by v(ALGOPT) and v(ALGAET) the expected total values
collected under these two algorithms. Denote the expected total value obtained by both algorithms
before observing the i value by vy ;. Conditioned on observing the (i + 2)™ value, denote
the expected total value obtained by both algorithms starting from observing (i + 2)' value by
Vliy2,..n)- Let X7 = E[X;|X; > 7] and p; := Pr[X; > 7;]. Finally, let p, be the probability that
the algorithm observes value X;, and ¢’ = vp,...i—1] + Pr(l = pix1p)(1 — pip)vjiya,..n- Then the

expected total values for both algorithms can be written as
v(ALGOTT) = ¢ + p, XTpi(1 = p+ pC) + pr(1 — pip) X piga (1 — p + pC),
v(ALGMT) = ¢ 4+ p, X7 i (1= p + p¢) + pr(1 — piap) X Tpi(1 = p + pC),

which yields v(ALGAYT) — v(ALGOPT) = p,(1 — p + p{)ppipis1(Xr,, — Xr,) > 0. Thus, one can con-
struct an alternative algorithm that employs a non-increasing sequence of thresholds by iteratively

swapping thresholds, which achieves optimality. ]

Proof of Proposition 3.2. The first equality follows immediately from the following characterization
of v(OPT), together with the subsequent claim, whose proof is provided at the end of the current

proof.
i—1 n
v(OPT) Zp 1-p)" " ) E[X)]+CEXp) | + (1-p)") EX
j=1 j=1

Claim A.1. For any j € [n], E[X(;)] = fol Pr[Bin(n,v) > j] - r(v)dv, where r(v) > 0 satisfies
ful r(v)dv = F~Y1 —u).

To prove the second equality, we note that

v(OPT) Zp ”Z/ Y(1-q) l—q)”qulj(j>dq
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/ FY(1—q) ¢ (p,q)da.

where the last equality follows from the binomial theorem.
Proof of Claim A.1.  For any j € [n], let b, j :=j - ( ) Then we can write the expected value of

the j* top ordered statistics as follows:

o0 . . 1 . .
E[X(j)] = / xf(x)F(x)" (1 - F(ac))j_1 by jda = / F_l(l —u)-(1-— u)"_juj_1 “bp,jdu
01 1 o 10
= / / r(v)dv- (1 —u)"Ju/ b, ;du= / Pr[Bin(n,v) > j] - r(v) dv, (23)
0 Ju 0

where the second equality uses the substitution 1 — F'(x) = u, and the third equality comes from
our assumption that F~! is differentiable and strictly decreasing so that the existence of r(v) is

guaranteed, and the last equality changes the order of integration. O

Example A.1. Here, we show that varying the disruption probability within the selection process
can lead to a competitive ratio of 0. Let n and s be large constants, where s < n. Assume n is
divisible by s for simplicity. Assume X; ~ Exp(1). Consider the disruption process Pr[Y; = 1] =1
ifi=1,14s,...,14(n/s—1)s, and 0 otherwise. The optimal clairvoyant algorithm collects top
n/s ordered statistics in expectation, where the exponential distribution’s order statistics roughly
follows harmonic numbers (e.g., see David and Nagaraja (2004)). Thus, v(0PT) ~ n/s 1log (1) ~
(% logs+ % — 1) . On the other hand, the optimal online algorithm’s value is n/s by acceptmg every
value when Y; = 0. From here, we see that v(ALG)/v(0PT) — 0 as n and s grow large.

B Missing Proofs from Section 4

is a non-decreasing

Lemma B.1. Fiz p € (0,1). Then R B 7 o B Y g

function in the interval v € [0, q].

Proof of Lemma B.1. 1t is sufficient to show that the function f(v) = v/ (2321 Pr[Bin(n,v) > j])

is non-decreasing for fixed ¢ € [n —1]. Consider g(v) = 1/f(v), and its derivative with respect to v:

7 n

e U% Y <Z> ko (1 — v)F — (Z) (n — k)o" (1 — v)" 1) — Pr[Bin(n, v) > j]

=1 k=j

1 ? n! j 1 n—j vn+1 B
= — _ -5 _ . > .
Uz;(n_]>'(]—1)‘v ( ’U) 1_U I'[ ln(n,v) 7]]

= Z - Pr[Bin(n,v) = j] — Pr[Bin(n, v) > j]).

U2

Observe that iv"*!/ (v?(1 —v)) is non-negative, and for each k € [1,i], k - Pr[Bin(n,v) = k| —

29



Z§:1 Pr[Bin(n,v) = j] = 0, as Pr[Bin(n,v) > j] = >°p_, Pr[Bin(n,v) = k]. Thus, ¢'(v) < 0, and
f(v) is non-decreasing in v € [0, . O

Proof of Lemma 4.4.
v(OPT) 1—p 21 / l—unjuj1 <n)du
SYRIEEDS ot (!
_ z 1 wl n—j,j—1 n
—/Zp Z Sg0y(w) - (1 —u)"u ]-<.>du
0 =2 J
5/" n Rt o n
/ 1—p)“12a2‘(1—u)"ﬂu3*1 N <> du
° J
j=1

n i—1
—alzpl— ) I—I—aQZZp )= Pr[Bin(n, B/n) > j
=2 j=1
i—1
=ai(l=p)(1— (1 —=p)""") +az)_ PrBin(n, 5/n) = jl[(1 - p)’ — (1 —p)"].

j=1

The second equality recognizes that Pr[Bin(n, 5/n) > j| = Oﬁ/n(l — )"y (?) du, and we

recover the lemma by letting n — oco. O

Proof of Lemma 4.5. We derive the performance of ALG? via direct calculation.

4 F(u) d a B) Tio.5/m(u)d
U(ALGq) _ An<q,p) . W _ An(q,p) . fO (al/n) {0}(u> ;’_ as (075/ ]('LL) u (per (7))
o An(Qap) ai .
= S (M 40y min{g, 5/n})
~maxd sup An(g,p) <a1 gy q) sup An(g:p) <al n azﬁ)
qel0,8/n) 4 qelp/n1] 4 n n
ﬂ -max{ sup 1 (1— (1_)\p> )(a1+a2)\), sup 1 <1— (1—)\p> > (a1 + azp) ¢,
D A€[0,8] A n Ae[Bn] A n
(24)

where the last equality follows from the change of variable ¢ = A\/n. We denote by 71 () the second
~1
term in the maximum argument in (24). We have 7 (\) = ()xp ( Ap) + (1 - %)n - 1),

and for A = 2/p, the derivative of r; becomes negative; hence, SUPe[,n] r1(\) can be restricted to
[B, max{/3,2/p}]. Next, letting n — oo yields

1—p 1—e 1—e
lim v(ALG?) = ——= -max<{ sup —— (a1 + ag), sup ——— (a1 +a2p) p. (25)
n-s00 P relo A Banax{p2/py] A

We denote by 72(A) and r3(A) the first and second terms in the maximum argument in (25),
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respectively. Note that 75(\) = [a1(e™*” — 1) + pAe (a1 + az))]/A%. Thus, ro/(A*) = 0 implies
that e™*? (a1 + a1pA* + aap(A*)?) = ay; hence, SUPxeo,5) 2(A) = max{ra(A*), r2(8), limy—0 r2(A)}
where 0 < \* < f3, if it exists. Moreover, r3(\) is a decreasing function in A, thus the supremum is
attained at A = 8. We combine both cases to conclude the proof. O
C Missing Proofs from Section 5

Proof of Proposition 5.3. By the second characterization of v*(0PT) in (2), we have

1
v7(0PT) = /0 F(u)g® (p, u) du

l—e

1 o* p 1 .
/ <(1 _p)n . 5{0}(U) - I—p /yl(epnu) mdS]I(Ovl) (U)) (1 - p) ’ n(l _pu) ! du
1 1—
/o ~1(epnuy Y'(8)

1 1—e 1 log(v) n—1 dU
- ——ds |1 — ,—npu
// " 7 ( L ) » (per v = e77%)
(

£

ds(1 — pu)" tpndu

1—e p1 n—1
/ / <1 + log v)> @%ds (changing order of integration)
0 max{y(s),e P} n vy (3>
1= 1 1 "
/ - <1 - (1 + og(y(s))> > ds. (per y(s) >e "™ whense (0,1—¢)) O
o Y(s) n

Proof of Lemma 5.4. We first show that (19) satisfies the Bellman equation (18).

0
0*
o*
0*

o
/0 h(u) du — pud(z)

~log(y(2))/p 1 1 log(y(x)) (' 1
- 0% . 5 / ——dslq)(u) | du—p- : / ds
/ ( Ol y=1(c-r) Y'(5) o )> p » Y(s)

min{— log(y(z))/p,— log(y(s))/p} 1 |
_ _p// duy/(s)ds—log(y(x))/w e
S [ sl o) [y,

v(s) y(s)

:9*+/ l()g@(/(;))ds_,_/l logy(,:?()x))ds / IOg(‘?(?))d (monotonicity of y(z))
0 S z S T S

_ px xyll(s) s er y'(z) = (z)lo X

9 +/0 Eh (per o' (z) = ¢/ (x) log(y(x)))

1 1

— 0 — T
B y'(z) v (0) ()

= —d'(z).

Next, we show that pu is indeed the unique maximizer. We proceed in two steps: (i) the derivative
with respect to p is zero. (ii) the derivative is positive when p = 0, and the derivative is negative
as p — 00. By Leibniz integral rule, we have 7- {fo u)du — ppd(z)} = h(p) — p- d(z).
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To verify (i), note that

5 log(y(z)) /1 1 /1 L
h(p) —p-d(x) =0%- ;0 (— — dsl —p- — ds = 0.
() —p-d(z) o—,—)=r 70 enm =p- | 70
To verify (ii), note that lim, o h(p) —p - d(z) = —p - d(z) < 0 and

L | | |
hO—p-dmzH*—p/ ds—p'/— ds:G*—p-/ ds > 0. O
0)=p-da) o 70 T o 7

Proof of Claim 5.6. Let d; , :==d((1 — 0)i/n)) and y; » := y((1 — 0)i/n)). Then, we have

q _
(1-p) /0 F(u)du+ (1 —pg)(1 +n5)dit1,6

1 [+ 1-—
< / h(u) du + (1 - ?> (I4+n0) <d¢,g + ngdg’a> (Rewrite ¢ = & & concavity of d; ;)

n Jo

= (1 + )i + ( / " h(u) du - (14 na)pudi,a) £ m) (2,0 -0) - 2 (- o))

0

' ' ' ! /
- 4 1 ) d’ d. od. ongd. 1
< D — i,0 + No Og(yz,a)dip + 1,0 + No®; & o io No®; & Og(%z o')d/ (1 . 0’)(1 + 770)
n n n n n n n
No IOg(yi O') nad;,a - Ud;,a _ Ungd;,a IOg(yz 0’)

=D; + T i+ d} (1 —0)(1+1n,)

n n n?

Note that 7, log(yis)dis < 0, and since dé,o’ < 0, it is sufficient to show that n, — o — o0, +
%(1 —0)(1+1ns) > 0, which is guaranteed by (20). O

D Missing Proofs from Section 7

Proof of Lemma 7.6. Recall that p; = E[max{Xl, . Xl}|X1 >7,...,X; > 7]. We first charac-
terize yy via a positive function r(v), where f v)dv = F71(1 —u). Let F-(z) := Pr[X; < z|X; >
7] = (F(z) — F(1))/(1 = F(7)). We have

m:/wxm ) = gy [ (@) = FE) T 4P

/ lldw_// v)du(g — w)'Ldw
s /m‘“{q’”} wawro = [ (¢ = (@ - minfa.0)) g

We complete the proof by employing the same non-adaptive algorithm value formulation as estab-
lished in Lemma 4.2. O

Define "
(v/q) 1—(1—gp—(1-p)v)

R = o -pw  G-a-om
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Lemma D.1. R(v) is non-decreasing in v < q.

Proof of Lemma D.1. We begin by differentiating R(v) explicitly for n < 4 and verify, by direct
computation, that R’(v) > 0. We then turn to the case n > 5. For n > 5, it is convenient to recast

R(v) using the following shorthand notation:

n—1 n s(v
S@):=) (1-azf = 1—(13;—56) s():=gp+(1—p)v,  Rv)= Sg((v)))
=0

We take the derivative of log R. Then we have

o () 1o (0] =1 - S0 - S0

d d
9 - =
o s flv) = o

Next, we show that log S is convex for n > 5. Setting u = 1 — z yields

n—1 n—1
S'z)==> jul™, @)= ji-1u2
j=1 j=2
Hence,
(log S)" (z) = S"(x)S(z) — (S,(JU))Q _ Do<icjen1(i—§)?ut 7% — %ZZ;zlo(i + jutti?

(S())* (S(@))*

When n > 5, (logS)"(xz) > 0, thus (logS)'(z) = S’(x)/S(z) is non-decreasing. Since v < g,
s(v) =qp+ (1 —p)v > wv. Because (logS)’ is increasing and 0 <1 —p < 1,

(1-p) (log S)(s(v)) — (log S)'(v) > (1 —p)(logS)'(v) — (log S)'(v) = —p(log §)'(v) > 0,

where the last inequality uses (log S)'(v) = S’(v)/S(v) < 0. Therefore,

g R) = (1-p) ¢ (8((” )_5W

and hence, R'(v) > 0 on (0, ¢l.

D.1 Upper Bound

In this subsection, we explain that our analysis is tight by illustrating an instance as the proof for

the upper bound. We use the same distribution from (7), that is,

a
F(u) = %5{0} (u) + a2]1(075/n] (u) (26)
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We can separately characterize the value of the optimal algorithm and the value of the single

threshold algorithm, when n — oc.
Lemma D.2. When n — 00, Unax(0PT) = (1 — p) - [al + az (1 — e‘ﬁ)].

Proof of Lemma D.2. We use the expression from Lemma 7.5,

1
v(OPT) = (1 - PE[X()] = (1 - p) / F (1 - u) (1 - )" ndu,

1 B/n
=(1 —p)n/ ﬂ6{0}(u)(1 —u)" tdu +(1 —p)n/ as(1 —u)" " du.
o M 0
1—-(1- "
== p)ar+ (= phn-ay E Iy oy (1- (- )]
n
We recover the claim by letting n — oo. O

Lemma D.3. Asn grows large, the expected value of ALGY™ converges to

1—e P
hm vmaX(ALGt/") = sup (1 —p) |:a2(1 — e~ ) 4 “u e]
t€[0,4] p t

Proof of Lemma D.3. Define m = min{q, /n}, we can find the following expressions for pj where

o = 0, and
R A k—1 I Tay k—1 " k—1
pr=— | F(1-wk(g—w)" dw=—|—kqg + ay k(qg—w)" " dw
qa~ Jo g Ln 0
:i[ﬂkq’“*l + az(qk—(q—M)k)} ok az[l— (1—m)k].
¢*Ln nq q

Thus, using the expression from Lemma 7.6 and denoting b, , := Pr[Bin(n,q) = al, ¢ := 1 — (1 —

ﬁ)k
nq )

ala
SUp Umax(ALGY) = max{ sup by ( p(1 — + az) + (1 —p)*(— + a2)> ,
q€[0,1] q€[0,8/n] ; Z nq
ark aia
sup by p(1—p)"(— + agcr) + (1 —p)*(— + azca)
B (Z a

1-p1—-(1- 1—-pl—(1—gp)"
=maxq sup ax(l—p)(1—(1—¢q)")+ wl-pl-(-aw) . osup =P (1=ap)
q€[0,5/n] P q g€(B/n1] P q

+as 1—p+(1p_mﬂ(1—(1—qp—(1—p)§)”)—(1—qp—(1—p)f)"]}
Y N O O SV ST Eor R i BN TC By F St e )
B {tE[O?B](l p)[2<1 (1 n)>+p 13 ],te[,BI,)n] D t
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+ as

g - Y ey

where the last equality uses the change of variable ¢ = t/n. We denote by ri(t) the second term
in the maximum argument in (27). Similar to the analysis in Lemma 4.5, we can prove that both
terms in 7 (t) is decreasing when ¢ > 2/p (see Claim D.4 for details). Hence, sup;c(g ) 71(t) can be
restricted to [, max{f,2/p}]. Next, letting n — oo, we can extend (27):

oap 1—e Pt
SUp Umax(ALG?) = max< sup (1 —p) |ag(l—€") + — ———|,
q€[0,1] t€[0,4] p ¢

l—p)1—e?
sup ol ~p) . ag
te[8,max{,2/p}] p t

1_ % (1 - e—(pt+(1—p)ﬂ)) _ e~ t+(1-p)B) |
p+(1-p)7
(28)

We denote by ra(t) the second term in the maximum argument in (28). r2(t) is a decreasing function

in ¢, thus the supremum is attained at ¢ = 3. From here, we conclude the proof. ]
Claim D.4. r(t) is decreasing in t fort > 2/p.

Proof of Claim D.4. By Lemma 4.5, the derivative of the first term in 71 (¢) is negative for ¢t > 2/p.
It remains to handle the second term. Set y(t) = pt + (1 — p)3, so that the second term can be

rewritten as

WP 1 (140

Observe that the preceding expression has the same structure as the first term; hence its derivative
is negative under the same condition, namely y(t) > 2. Since t > 2/p implies y(t) = pt+ (1—p)5 >
pt > 2, this condition is satisfied. O

Finally, we use the preceding results to establish that the competitive ratio admits an upper

bound of 1 — e~ *®) . Specifically, we have

. Umax (ALGq) . . Umax (ALGq)
inf sup ——— < inf min sup ——— 2
FeFn>14e00,1] Umax(OPT) n>1lar,a220,a01+a2=1 geo 1] UmaX(OPT)

(1-p) [a(1 = e7t) + 2 L=
< lim lim min sup

B—o0 n—00 ay,a2>0,a1ta2=1 >0 L=p

1 — e Pt 1 — Pt
= max min {aQ(le_t)+a1 <e>} :supmin{le_t,e.}

t>0 ai1,a2>0,a1+a2=1 pt >0 pt

The second inequality follows directly from Lemmas D.2 and D.3. The first equality uses the quasi-

% l_%w which allows the interchange of the min and

max operators under Sion’s minimax theorem (Sion, 1958). The proof is detailed in Claim D.5. The

concavity of the function f(t) = as(1—e~ %)+
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final equality then follows by noting that, for any fixed ¢, the minimum over the convex combination

parameters a1, as occurs at one of the extreme points of the simplex.
Claim D.5. For any aj,as > 0,a1+a2=1,0<p <1, andt >0, f(t) is a quasi-concave function.

Proof of Claim D.5. A direct differentiation gives
F1(t) = age™t + 2L (e*Pt(l +pt) — 1).
pt?
Multiplying by the positive factor pt? and rearranging,
() =0 = L) =R(t), L) :=a (1 _ e —l—pt)), R(t) == pas t2e~.
L is strictly increasing on (0, 00):

L'(t) = a1p’te P lim L(t) = lim L(t) = ay.
(t) = ar1p™te ™™ >0, tlﬁ)l() 0, Jim L(t) = ay

R is unimodal with a unique maximum at ¢ = 2:

R'(t) = page™t(2t — %), R(0) =0, lim R(t) = 0.

t—o00

Since L is strictly increasing, and R increases on (0, 2), then decreases on (2, 00), the equation
L(t) = R(t) has at most one solution t* > 0. Indeed, if 0 < t; < to with L(¢;) = R(¢;), then,
because L is strictly increasing, R — L > 0 on (t1,t2). But R — L has at most one local maximum
(as R has one and L is monotone), so starting from R(0) — L(0) = 0, it cannot become positive
and return to 0 twice without creating two distinct extrema. Hence, f’ has at most one zero on
(0, 00). O

E Missing Details from Section 8

In this section, we study the non-i.i.d. variant of OS-UD, where the values X;’s are drawn from
non-negative, independent, but potentially non-identical distributions F;’s, respectively. For this
variant, we first establish a lower bound for the competitive ratio against the benchmark, which
can rearrange the arrival sequence after observing all X;’s. We then conclude by providing a tight

upper bound for the competitive ratio.

Theorem E.1. In the non-i.i.d. variant of OS-UD with ¢ € [0,1], the optimal online algorithm

achieves at least a 1/2-competitive ratio with respect to the offline benchmark.

Proof of Theorem E.1. For each i € [n], let z; denote the probability that OPT selects item 4, and

set B =1— (1 —()p. By stochastic dominance (conditioning on the top z;-quantile maximizes the
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conditional mean), there exists a threshold 7; with z; = Pr[X; > 7;] such that

n
v(OPT) ZB E[X; | OPT selects i] - 2z < B-E[X; | X; > 7] - 2. (29)

i=1
Consider the following online algorithm ALG. At time 4, ALG independently skips the current item
with probability ; € [0, 1] (to be determined below); otherwise, if X; > 7;, ALG accepts the current

item. Let R; := Pr[ALG reaches item ¢], where R; = 1. Then we can write the value of ALG as
v(ALG) Z Ri-(1—¢)-B-E[X;| X; > 2. (30)

Since both v(ALG) and v(0OPT) are comparable term by term, it is sufficient to prove that for all
i € [n], we have R;(1 —¢;) > 1/2. To see this, we first characterize a recurrence relation for R;.
From time 7 to i+ 1, ALG fails to advance if and only if ALG does not skip (with probability (1 —¢;)),
X; > 7;, and disruption happens. Therefore,

Rit1 = Ri(1—(1—¢)zp), i=1,...,n—1 (31)

Moreover, to guarantee that R;(1 —¢;) > 1/2, we simply set 1 —¢; = 1/(2R;), and plugging into

the recurrence (31), we have the following updated recurrence for R;:

2ip Zip
1 < 2Ri> 2 (32)

Iterating (32) yields the closed forms for R; and ¢; for all i € [n]:
D 1
Ri=1-2%"z,  a=1- — iy (33)

To ensure R; > 1/2 so that ¢; is a valid probability, it suffices to show 22;11 2z < 1/p. Bounding

the expected number of OPT’s selections before time ¢ gives

— — 1-(1-pt 1
S s S opt = DT L
k=1 k=1
Finally, combining (29) and (30) with R;(1 —¢;) = 3 yields
v(ALG) 1i E[X; | X; >m)- = 1 v(0PT).
2 £ Til 2 g
Since the optimal online policy attains a value of at least v(ALG), the result follows. ]
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Upper Bound. We now present an instance that provides a tight upper bound for the competitive
ratio under the non-i.i.d. variant of OS-UD. Consider n items arriving in order. The last item
follows the distribution X,, = 1/e with probability ¢ and X,, = 0 otherwise, whereas all preceding
items share a deterministic value: X7 =--- = X,,_1 = (p — ¢), where € > 0 is sufficiently small. At
the penultimate encounter (at time n — 1), the optimal online algorithm either skips item n —1 and
advances to accept the last item (with expected value gain of B), or accepts item n — 1 and possibly
advances to accept the last item (with expected value gain of B[(p — &) + (1 — p)] = B(1 —¢)).
Therefore, for any € > 0, it is optimal to skip in the penultimate encounter. By induction, it
follows that the optimal online algorithm skips the first n — 1 items and accepts the last item.
Thus, v(ALG) = B. On the other hand, the offline benchmark goes backwards in order, and

retrieves:

n—1 n—2
v(0PT) = 5<Bi—|—B(p— &)y [ —p)m> +(1-e)Bp-2)) (1-p™
m=1 m=0

Letting n — oo and then € — 0 yields the asymptotic competitive ratio of

. v(ALG) 1
lim = —,
n—=co y(0PT) 2
e—0
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