
Online Selection with Uncertain Disruption

Yihua Xu∗† Süleyman Kerimov‡† Sebastian Perez-Salazar∗†

October 31, 2025

Abstract

In numerous online selection problems, decision-makers (DMs) must allocate on the fly lim-

ited resources to customers with uncertain values. The DM faces the tension between allocating

resources to currently observed values and saving them for potentially better, unobserved val-

ues in the future. Addressing this tension becomes more demanding if an uncertain disruption

occurs while serving customers. Without any disruption, the DM gets access to the capacity in-

formation to serve customers throughout the time horizon. However, with uncertain disruption,

the DM must act more cautiously due to risk of running out of capacity abruptly or misusing

the resources. Motivated by this tension, we introduce the Online Selection with Uncertain Dis-

ruption (OS-UD) problem. In OS-UD, a DM sequentially observes n non-negative values drawn

from a common distribution and must commit to select or reject each value in real time, without

revisiting past values. The disruption is modeled as a Bernoulli random variable with probabil-

ity p each time DM selects a value. We aim to design an online algorithm that maximizes the

expected sum of selected values before a disruption occurs, if any.

We evaluate online algorithms using the competitive ratio—the ratio between the expected

value achieved by the algorithm and that of an optimal clairvoyant algorithm that knows all

value realizations in advance but still faces uncertain disruption. Using a quantile-based ap-

proach, we devise a non-adaptive single-threshold algorithm that attains a competitive ratio

of at least 1 − 1/e, and an adaptive threshold algorithm characterized by a sequence of non-

increasing thresholds that attains an asymptotic competitive ratio of at least 0.745. Both of

these results are worst-case optimal within their corresponding class of algorithms and continue

to hold regardless of whether the last value is partially recoverable. Our results reveal an in-

teresting connection between the OS-UD problem and the i.i.d. prophet inequality problems as

the number of customers grows large.

1 Introduction

Online selection models have gained increasing attention, as they capture key features of extensive

applications such as online advertising (Mehta and Panigrahi (2012)), online resource allocation

(Delong et al. (2024)), and applicant evaluation (Epstein and Ma (2024)). Generally speaking,

in these problems, a decision-maker (DM) must irrevocably allocate limited resources to incoming

customers with uncertain values. The DM faces a fundamental tension between allocating resources

to currently observed values and saving them for potentially better, unobserved values.

∗Department of Computational Applied Mathematics and Operations Research, Rice University, USA.
†Ken Kennedy Institute, Rice University, USA.
‡Jones Graduate School of Business, Rice University, USA.

1



Alleviating this tension becomes more challenging if committing to a request may cause a dis-

ruption, potentially halting the remaining process. For example, in cloud computing, providers

such as Amazon Web Services and Azure often offer spot instances at lower prices than on-demand

instances by utilizing underutilized resources. While these providers aim to maximize resource

utilization and generate additional revenue through low-priced spot instances, providers must man-

age the risk of reclaiming these resources for higher-priority on-demand users; when reclamation

occurs, service is interrupted and the provider typically recovers only a fraction of the value from

the disrupted task (e.g., see Cohen et al. (2019); Perez-Salazar et al. (2022)). In a similar vein, an

owner of a reusable resource (e.g., a host renting her property on Airbnb, or a driver accepting a

ride on Uber) might experience a disruption in operations due to property damage or other unfore-

seen issues caused by the customer. While in practice such disruptions are often temporary—for

instance, an Airbnb host may suspend operations during repairs and then resume hosting—one can

view these events as a sequence of disruptions and re-entries. Our model captures the cost of these

interruptions through the abstraction of disruptions that halt service, regardless of whether they

are permanent or repeated. In this context, the last accepted transaction typically yields its full

value before any subsequent downtime. Motivated by this, we introduce the Online Selection with

Uncertain Disruption (OS-UD) problem, which captures such disruptions when serving incoming

requests.

In the OS-UD problem, a finite sequence of n independent and identically distributed (i.i.d.)

non-negative random variables is observed sequentially. Upon observing a value, the DM must

decide whether to (i) select it, or, (ii) reject it and observe the next value, if any, without the

possibility of reconsidering past observations. Importantly, with a known probability p ∈ [0, 1],

selecting a value triggers a disruption that halts the process, and the DM partially recovers the last

selected value; otherwise, with probability 1− p, the selection is retained and the process continues

with the remaining observations.

Our objective is to design an online algorithm that maximizes the expected sum of selected

values under disruption. We evaluate the performance of algorithms using the competitive ratio,

which is the fraction between the value of an algorithm and the value of an optimal clairvoyant

algorithm that knows the values upfront and can select order of observation, but still faces unknown

disruptions. The competitive ratio is a number in the interval [0, 1] that measures the “price” paid

by the DM for not knowing all the sequence of values upfront. Our definition of competitive ratio

differs slightly from the usual definition found in other online selection problems (e.g., see Krengel

and Sucheston (1977); Mehta and Panigrahi (2012); Hill and Kertz (1982); Correa et al. (2021))—a

formal description of our problem and discussion is presented in §1.1. Our goal is to shed light

on the following questions: (i) What is the optimal (worst-case) competitive ratio for the OS-UD

problem? (ii) How should a DM accept incoming requests to achieve the optimal competitive ratio?

In general, without imposing any structure on the disruption process, any online algorithm can

perform arbitrarily poorly and the competitive ratio can be 0 (see Example A.1). In this paper,

we answer both questions by devising simple threshold policies, and we provide an exhaustive

2



analysis for the case when the probability of disruption p is a fixed constant. We first show

that the optimal online algorithm induced by a stochastic dynamic program is characterized by

a sequence of non-increasing thresholds, where the algorithm accepts the incoming request if and

only if its value is at least the current threshold. Motivated by this, in order to quantify the

“price” that the DM must pay due to uncertainties, we analyze two classes of algorithms that

are easy to describe: non-adaptive (fixed) threshold algorithms and adaptive threshold algorithms.

Such algorithms are also desirable in practice, as they are simple-to-implement, have economic

interpretations (Arnosti and Ma, 2023; Van Mieghem, 1995; Naor, 1969), and are widely used in

posted price mechanisms (Chawla et al., 2007, 2010, 2024; Correa et al., 2019).

For non-adaptive threshold algorithms, we offer a complete characterization of the optimal

competitive ratio, which is 1 − 1/e, through the design of an algorithm and a hard instance. For

adaptive threshold algorithms, we present an algorithm that employs a non-increasing sequence

of thresholds with a tight asymptotic competitive ratio of θ∗ ≈ 0.745, where θ∗ is a parameter

appearing in the Hill and Kertz equation (Hill and Kertz, 1982; Kertz, 1986). Interestingly, θ∗

coincides with the optimal competitive ratio of the i.i.d. prophet inequality problem (Correa et al.,

2021; Hill and Kertz, 1982; Kertz, 1986).

The techniques derived for the fixed disruption probability case can also be adapted to the

case when disruption is rare (where p = α/n, for α < 1). Notably, one can obtain asymptotic

competitive ratios that are strictly larger than θ∗ (see §8). After presenting the formal introduction

of our problem in the next subsection, we provide the details of our results and techniques in §1.2.

1.1 Problem Formulation

Given a fixed disruption probability p ∈ [0, 1] and a partial recovery parameter ζ ∈ [0, 1], an instance

I of the OS-UD problem is given by a pair (n, F ), where n ≥ 1 is the number of values, and F

is a continuous and increasing cumulative distribution function supported in the non-negative real

numbers.1 Let F be the set of all such cumulative distribution functions. An instance I = (n, F )

encodes two sequences of random variables (Xi)
n
i=1 and (Yi)

n
i=1. The Xi’s are non-negative and i.i.d.

following the distribution F . The Yi’s are are i.i.d. 0/1-random variables with Pr[Yi = 1] = p ∈ [0, 1].

The DM observes Xi’s in a fixed order 1, . . . , n, sequentially. Upon observing Xi, the DM can either

skip to the next value (if one remains) or select the current one. If the DM selects Xi, the DM then

observes Yi indicating whether making this selection will disrupt the whole process. If Yi = 1, we

say that a disruption occurred and the process terminates. In this case, the DM receives the sum

of selected values up to the disruption and a fraction ζ of the last selected value Xi. If Yi = 0, the

process continues, and the DM receives Xi as part of the current round’s value. We aim to find an

online algorithm ALG that maximizes the total expected value collected. We denote by v(ALG(I))

the expected value obtained by algorithm ALG for an instance I.

1We can assume that F is continuous and smooth by perturbing the observed values with a small continuous
noise. The monotonicity assumption is less common, but follows a similar principle of perturbing the original F (e.g.,
see Liu et al. (2020); Perez-Salazar and Verdugo (2024)).

3



We adopt a competitive analysis, where we compare the value of an algorithm to an optimal

clairvoyant algorithm that has access to the value realizations X1, . . . , Xn, in advance, but not to

the sequence Y1, . . . , Yn. The clairvoyant does not operate sequentially in time; rather, it can freely

choose the order in which to examine the values, denoted Xσ(1), . . . , Xσ(n), where σ is a permutation

of [n]. In this sense, the clairvoyant searches over the available options without being constrained

by the timeline of arrivals, thereby representing the best possible performance under full knowledge

of values, but uncertainty about disruptions. Thus, the optimal clairvoyant algorithm OPT obtains

a value of the top D − 1 order statistics before disruption, and additionally receives ζ of the last

item if disruption occurs within n values:

v(OPT(I)) = E

max
σ


min{D−1,n}∑

i=1

Xσ(i) + ζ · I{D ≤ n}Xσ(D)




= E

min{D−1,n}∑
i=1

X(i) + ζ · I{D ≤ n}X(D)

 , (1)

where D is a geometric random variable with parameter p,2 and X(j) denotes the jth largest order

statistic. We abuse notation and simply write ALG and OPT for ALG(I) and OPT(I), respectively,

when the instance I is clear from the context. For convenience, we will also omit the word “online”

when referring to online algorithms when the context is clear. Then, given an algorithm ALG with

a disruption probability p and a partial recovery parameter ζ, its competitive ratio is

inf
n≥1,F∈F

v(ALG)

v(OPT)
,

and we seek an algorithm with the largest competitive ratio possible. In the remainder of the

paper, we focus on the case p ∈ (0, 1), since: (i) when p = 0, there are no failures and it is optimal

to accept all values; (ii) when p = 1 and ζ = 0, both the clairvoyant algorithm and any other

algorithm obtain a value of 0; and (iii) when p = 1 and ζ ∈ (0, 1], the problem reduces to the classic

i.i.d. prophet inequality problem with values rescaled by 1/ζ.

We remark that the clairvoyant algorithm is different from the offline algorithm that knows

the realizations of Xi’s and Yi’s upfront for all i ≤ n. The following example shows that it is

impossible to obtain a positive constant competitive ratio when we attempt to replace OPT by the

offline algorithm.

Example 1.1. Consider the following n ≥ 1 i.i.d. values X1, . . . , Xn, where Xi’s are uniformly

distributed in [0, n]. Fix p ∈ (0, 1) and a partial recovery parameter ζ = 0. Note that the offline

algorithm will select all the values for which Yi = 0. Thus, the expected value obtained by the offline

algorithm is v(OPToffline) := E[number of i’s with Yi = 0] ·E[X1] = (1− p)n2/2. On the other hand,

we have v(OPT) ≤ n/p. Then, v(ALG)/v(OPToffline) ≤ v(OPT)/v(OPToffline) ≤ 2/(p(1 − p)n), for any

2That is, Pr[D = j] = p(1− p)j−1 for j ≥ 1.

4



algorithm ALG. This shows that, for any fixed p ∈ (0, 1), no constant competitive ratio is possible

when we compare v(ALG) against the value of the offline algorithm that knows all the information

in advance.

Note that one can formulate the DM’s problem as a stochastic dynamic program (see §3).
However, analyzing competitive ratios is not straightforward as we are comparing two algorithms

that operate with asymmetric information. Nevertheless, the dynamic program reveals a nice

structural property that we will leverage in our analysis. Indeed, given an instance I = (n, F ) of

the OS-UD problem, there exists an optimal algorithm that employs thresholds τ1 ≥ · · · ≥ τn such

that if the ith observed value Xi is at least τi, then the algorithm selects it (see Proposition 3.1).

This motivates us to focus on the two extremes for this class of threshold-based algorithms: (1)

NA, which is the class of non-adaptive algorithms, where τ1 = · · · = τn; and (2) AD, which is the

class of adaptive algorithms, where we do not constrain the thresholds to be the same, but the

thresholds must be non-increasing, i.e., τ1 ≥ · · · ≥ τn. For a fixed p ∈ (0, 1) and ζ ∈ [0, 1], and a

class of algorithms C ∈ {NA,AD}, we define the competitive ratio for instances of length n in class

C via

γCn,p,ζ := sup
ALG in C

inf
F∈F

v(ALG(n, F ))

v(OPT(n, F ))
.

Given that C is a class of threshold-based algorithms, we can exchange the supremum with the

infimum in the definition of γCn,p,ζ without altering its value. Thus, the largest competitive ratio in

the class C for the OS-UD problem can be written as follows:

γCp,ζ := sup
ALG in C

inf
n≥1,F∈F

v(ALG)

v(OPT)
= inf

n≥1
γCn,p,ζ .

1.2 Our Technical Contributions

Our first result provides a tight performance bound for the non-adaptive threshold algorithms.

Theorem 1.1. For any p ∈ (0, 1) and ζ ∈ [0, 1], we have γNA
p,ζ = 1− 1/e.

To prove Theorem 1.1, we explicitly construct a fixed threshold algorithm with a competitive ra-

tio of at least 1−1/e, through focusing on a subclass of NA, the quantile-based threshold algorithms.

Algorithms in this subclass are parametrized by q ∈ [0, 1], which we refer as the quantile of the

algorithm. An algorithm with a quantile q computes a threshold τ via q = Pr[X ≥ τ ] = 1− F (τ),

and selects any value in the input sequence that is at least τ .

To prove that the competitive ratio of an algorithm ALG is at least θ, one can use standard

stochastic dominance arguments, and it is sufficient to show that Pr (ALG obtains value of at least τ)

is at least θ ·Pr (OPT obtains value of at least τ) for any τ ≥ 0. However, due to possibility of mak-

ing multiple selections, analyzing both of these quantities is not evident. Instead, we characterize

the optimal values for both the clairvoyant and the quantile-based threshold algorithms as integrals

of the inverse of F . From here, we can deduce a lower bound for γNA
n,p,ζ that only depends on n

5



and p, and not dependent on ζ or F . This lower bound turns out to be monotonically decreasing

in n and converging to 1 − 1/e, providing the desired lower bound on γNA
p,ζ . To prove an upper

bound on γNA
p,ζ , we explicitly construct an instance (n, F ) such that γNA

n,p,0 ≤ 1 − 1/e + o(1), and

since γNA
p,ζ = infn≥1 γ

NA
n,p,ζ , the result follows. For ease of exposition, we present the proof for the

case ζ = 0 in §4, and we treat the general case ζ ∈ [0, 1] in §6.1.
We then turn our attention to the performance of the general class of adaptive threshold al-

gorithms, and we show that adaptivity is key. Our second result shows that a competitive ratio

better than 1− 1/e is possible for such algorithms.

Theorem 1.2. For any p ∈ (0, 1) and ζ ∈ [0, 1], lim infn→∞ γAD
n,p,ζ ≥ θ∗ ≈ 0.745, where β = 1/θ∗

is the unique solution to the integral equation
∫ 1
0 (y − y ln y + (β − 1))−1 dy = 1.

Theorem 1.2 shows that there is a strict separation between acting adaptive and non-adaptive.

In order to prove this result, we provide a quantile-based algorithm similar to Correa et al. (2021)

and Perez-Salazar et al. (2025). For each observed value i, we sample a quantile qi from an

appropriate distribution, and we compute a threshold τi such that Pr[X ≥ τi] = 1 − F (τi) = qi.

The algorithm then selects i if the observed value Xi is at least τi. By an appropriate choice of

distribution for the quantiles, we show that the value of the algorithm is asymptotically a fraction

θ∗ ≈ 0.745 of v(OPT). Again for ease of exposition, we present the algorithm and its analysis for

ζ = 0 in §5, and analyze the general case ζ ∈ [0, 1] in §6.2.
Our final result establishes a limit on the competitive ratio attainable by any algorithm for the

OS-UD problem, contributing another piece to the puzzle of answering our first research question.

Theorem 1.3. For any p ∈ (0, 1) and ζ ∈ [0, 1], we have γAD
p,ζ ≤ θ∗, where θ∗ is defined in

Theorem 1.2.

We derive the upper bound by adapting the worst-case instance for the i.i.d. prophet inequality

problem from (Liu et al., 2020; Hill and Kertz, 1982) toOS-UD. We present the details in §5. Taken

together, Theorems 1.2 and 1.3 imply that, for any fixed p ∈ (0, 1), limn→∞ γAD
n,p,ζ = θ∗ ≈ 0.745.

Our quantile-based techniques are highly flexible. In §7, we show that the single-threshold

approach extends to a variant of the OS-UD problem, in which the objective is not to maximize

the sum of the selected values, but rather to maximize the largest value among them. For this

model, we prove a tight competitive ratio of 1 − e−λ(p) for the class of non-adaptive algorithms,

where λ = λ(p) is the unique solution to the equation (1 − e−λp) = pλ(1 − e−λ). Notably, this

competitive ratio lies in the range [1 − 1/e, 1] and approaches 1 as p → 0. A formal definition of

this model, along with our results and analysis, is provided in §7.

2 Related Work

Online selection, as well as the tension between collecting short-term values and saving resources

for long-term values, have been extensively studied in computer science and operations research

literature through the lens of optimal stopping theory (e.g., see Hill and Kertz (1992); Shiryaev

6



(2007); Krengel and Sucheston (1977)), and for their broad applicability on various practical prob-

lems from crowd-sourcing (Mehta and Panigrahi, 2012) to capital investment problem (Goyal and

Ravi, 2010). Here, we present several streams of literature that are closely related to our work.

Prophet Inequality. One related stream of literature to our work is the prophet inequality

problem (e.g., see Krengel and Sucheston (1977); Samuel-Cahn (1984)), in particular, the case with

i.i.d. values. In the i.i.d. prophet inequality problem (Hill and Kertz, 1982), a DM must select at

most one value from a sequence of i.i.d. randomly generated values, and her goal is to design an

algorithm with a large competitive ratio, where the offline benchmark is the expected maximum

of the sequence of values. It is known that the optimal competitive ratio for the i.i.d. prophet

inequality problem is θ∗ ≈ 0.745, which is the unique parameter appearing in the Hill & Kertz

equation (Hill and Kertz, 1982; Kertz, 1986; Correa et al., 2021). This optimal algorithm can be

attained by a quantile-based algorithm that depends solely on n and is independent of the specific

instance distribution. To facilitate the analysis of the algorithm, the competitive ratio can be

retrieved through a unique solution of the Hill and Kertz equation. Similar techniques to using

quantile algorithms (e.g., see Feng et al. (2025); Allouah et al. (2023)) and ODEs have also been

explored in various recent work (e.g., see Liu et al. (2020); Correa et al. (2021)). By generalizing

the Hill and Kertz equation, Brustle et al. (2025) introduces a novel non-linear system of differential

equations and provide tight analysis for the k-prophet inequality problem. Our paper extends the

single-selection prophet setting by incorporating an additional disruption indicator, and we use

a similar quantile-based approach to develop an adaptive threshold algorithm, which achieves an

asymptotic competitive ratio of θ∗ as well.

Random horizon. There is large body of work in optimal stopping problems with random hori-

zon (e.g., see (Hajiaghayi et al., 2007; Zhang and Jaillet, 2023)). Here, the disruption is caused

by not knowing the length n of values upfront. For example, the uncertain horizon setting has

been extensively studied within the framework of the secretary problem. When no distributional

information is available regarding the disruption time—beyond which no further applicants can be

picked—it is known that no algorithm can achieve a constant competitive ratio (Hill and Krengel,

1991). However, if a random termination time with a known value-independent distribution exists,

a conditionally optimal selection rule can be formulated (Samuel-Cahn, 1996). In our case, the

disruption is caused potentially by selecting a value, and in principle we could observe the whole

sequence of n values. Closer to our work is Alijani et al. (2020), which studies the prophet inequality

problem with supply uncertainty. Even though the OS-UD problem has applications in settings

with supply uncertainty, our main focus is in applications, where serving a request can disrupt the

remaining selection process. In a similar vein, our model is loosely related to stochastic knapsack

problems (e.g., see (Dean et al., 2008; Ma, 2018)), where items have unknown stochastic sizes, items

are packed sequentially, and if the knapsack is overflowed, then the whole process stops. We could

regard the OS-UD problem as a knapsack problem, where we have a knapsack of capacity 1, and

each item has two possible sizes: size 1/n with probability 1− p and size 1 + 1/n with probability

p. Nevertheless, the knapsack literature mostly deals with approximation algorithms as opposed to

7



competitive analysis that we pursue in this work.

Dynamic matching and online resource allocation. The tension between committing to a

decision now and delaying decisions in anticipation of better opportunities arises as an inherent

trade-off in many stochastic models. In the context of dynamic matching and online resource

allocation, recent work addressed this trade-off through the lens of an all-time regret notion (Wei

et al., 2023; Kerimov et al., 2024, 2025; He et al., 2025; Gupta, 2024) and approximation algorithms

(Aouad and Saritaç, 2020). In particular, the all-time regret notion implicitly deals with uncertain

disruption by guaranteeing near-optimal performance throughout the time horizon. Our work

studies the same trade-off in the context of online selection by explicitly introducing a disruption

indicator, and while there are differences across these stochastic models, we hope that the modeling

we propose in this work can be leveraged to study this fundamental tension under disruptions such

as match rejections and item returns.

3 Preliminaries

In this section, we present some preliminaries needed in the remainder of the paper. All missing

proofs in the main body are deferred to the appendix. The value maximization problem faced by

the DM can be solved by means of stochastic dynamic programming. For any n ≥ 1, a disruption

parameter p ∈ (0, 1), a partial recovery parameter ζ ∈ [0, 1], and a distribution F ∈ F , let Di(p, F )

be the optimal value obtainable from the sequence (Xj)
n
j=i, when i − 1 ≤ n values have been

observed already (i.e., the ith value is ready to be observed next) and no disruption has occurred

yet. Then clearly Dn+1(p, F ) = 0, and for i ≤ n, we have

Di(p, F ) = max
τi≥0

{
Pr[X < τi]Di+1(p, F ) (DP)

+ Pr[X ≥ τi]
(
(1− p)

(
E[X | X ≥ τi] +Di+1(p, F )

)
+ p ζ E[X | X ≥ τi]

)}
.

By solving (DP), one can obtain an optimal algorithm that at time i ∈ [n], selects the observed

value Xi if it is at least τi, where τi is the maximizer of (DP). The next proposition states that it

is optimal to use a non-increasing sequence of thresholds, i.e., τ1 ≥ · · · ≥ τn.

Proposition 3.1. There exists an optimal algorithm for the OS-UD problem that employs a non-

increasing sequence of thresholds.

Next, we provide two characterizations of v(OPT) in terms of the inverse of F and its derivative.

These characterizations will be useful in the analysis of NA and AD classes.

Proposition 3.2. The value achieved by the optimal algorithm can be characterized as follows:

v(OPT) =

∫ 1

0

(
Bn(p, v) + ζ

[
1− (1− vp)n]

)
r(v) dv =

∫ 1

0
F−1(1− q)g(ζ)n (p, q) dq, (2)

8



where Bn(p, v) := E[min{X,D − 1, n}] with X ∼ Bin(n, v), and r(v) > 0 is a function such that∫ 1
u r(v) dv = F−1(1− u),3 and g

(ζ)
n (p, q) = n

(
1− (1− ζ)p

)
(1− pq)n−1.

Both representations of v(OPT) originate from its characterization in (1), which express the value

as the expected sum of order statistics up to the disruption point:

v(OPT(I)) = Pr[D > n] E

[
n∑

i=1

X(i)

]
+

n∑
j=1

Pr[D = j] E

[
j−1∑
i=1

X(i) + ζ X(j)

]
.

For each term E[X(i)], two equivalent characterizations are available: (i) the tail-integral represen-

tation, where the integrand is the survival function, or, (ii) the density-based representation, where

one starts from the distribution of order statistics, performs a change of variable into quantile form,

interchanges integrals, and applies the binomial theorem. The formal proof is given in §A.
Finally, we reproduce the system of ordinary differential equation (ODE) introduced by Hill and

Kertz (1982), colloquially known as the Hill and Kertz equation. This will be used in the analysis

of the AD class. We want to find a solution y : [0, 1] → [0, 1] to the following ODE:

y′(t) = y(t)(ln(y(t))− 1)−
(

1

θ∗
− 1

)
,

y(0) = 1, lim
t↑1

y(t) = 0.

This system has a solution if and only if θ∗ ≈ 0.745, where θ∗ the unique solution to the integral

equation in Theorem 1.2.

4 The Class of Non-Adaptive Algorithms

In this section, we analyze the performance of non-adaptive threshold algorithms for ζ = 0. We fully

characterize the competitive ratio achievable by this class, presenting an optimal algorithm that

guarantees a competitive ratio of at least 1− 1/e for any input to the OS-UD problem. Moreover,

we show that no non-adaptive algorithm can achieve a competitive ratio exceeding 1− 1/e+ o(1)

in the worst case. Together, these results imply Theorem 1.1.

4.1 Quantile-Based Non-Adaptive Algorithm

Our algorithm is quantile-based. It receives a quantile q ∈ [0, 1], sets the threshold τ = F−1(1− q),

and selects any value of at least τ . For any n ≥ 1, we denote the algorithm with quantile qn by

ALGqn and its expected value by v(ALGqn). The main result of this section is the following:

Theorem 4.1. For any n ≥ 1, if qn = min{1, 1/pn}, we have v(ALGqn )
v(OPT) ≥ 1− 1

e .

3The existence of r(v) is guaranteed by our assumption of F−1 being differentiable and strictly decreasing.

9



Theorem 4.1 immediately implies γNA
p,0 ≥ 1− 1/e, proving the first part of Theorem 1.1. The proof

relies on two key lemmas. The first lemma provides a lower bound on v(ALGqn)/v(OPT) that is

independent of F .

Lemma 4.2. For any n ≥ 1 and p ∈ (0, 1), we have

v(ALGqn)

v(OPT)
≥ (1− (1− qnp)

n)

p
·min

{
p

1− (1− p)n
,

1

qnn

}
, (3)

for any instance of the OS-UD problem.

Let ηqnn,p denote the right-hand side of (3). The next lemma provides a useful monotonicity property.

Lemma 4.3. For any n ≥ 1, let qn = min{1, 1/pn}. Then, we have ηqnn,p ≥ η
qn+1

n+1,p. Furthermore,

limn→∞ ηqnn,p = 1− 1/e.

With these two lemmas, we are ready to provide the proof of Theorem 4.1. Indeed, for any k ≥ 1,

we obtain v(ALGqn)/v(OPT) ≥ ηqnn,p ≥ η
qn+k

n+k,p, where the first inequality simply follows from Lemma

4.2, and the second inequality follows from applying the monotonicity in Lemma 4.3 iteratively k

times. Thus, we obtain v(ALGqn)/v(OPT) ≥ limk→∞ η
qn+k

n+k,p = 1− 1/e for any n ≥ 1. We use the rest

of this subsection to prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. Fix n ≥ 1, and we drop the index n from quantile for simplicity. We start

characterizing v(ALGq) as follows:

v(ALGq) =
n∑

a=1

Pr[Bin(n, q) = a]

(
a∑

i=1

p · (1− p)i−1 · (i− 1) + a · (1− p)a

)
· E[X|X ≥ τ ]

= An(q, p)

∫∞
τ x · f(x) dx
Pr[X ≥ τ ]

= An(q, p)

∫ q
0 F−1(1− u) du

q
= An(q, p)

∫ 1
0 r(v)min{v, q}dv

q
, (4)

where the second equality uses An(q, p) = (1−p) · (1− (1− qp)n) /p, which is a simplification from

the preceding expression. Note that An(q, p)/q denotes the expected number of items accepted

by the algorithm at quantile at most q, and E[X | X ≥ τ ] represents the expected value of an

item whose value lies above the threshold τ = F−1(1− q). Hence, v(ALG) can be interpreted as the

expected number of accepted items at quantile q multiplied by the expected value of such an item; the

third equality uses the assumption that F is strictly increasing and substitutes F (x) by 1− u, and

the last equality is achieved by setting F−1(1− u) =
∫ 1
u r(v) dv, which is valid by our assumption

on F . Then, per Proposition 3.2, we have

v(ALGq)

v(OPT)
=

(An(q, p)/q)
∫ 1
0 r(v)min{v, q}dv∫ 1

0 Bn(p, v)r(v) dv
≥ inf

v∈[0,1]

An(q, p) ·min{v, q}
Bn(p, v) · q

. (5)

For v ≥ q, the ratio inside the infimum becomes An(p, q)/Bn(p, v) which is a decreasing function

10



in v. For v < q, the ratio now becomes

An(q, p) · v
Bn(p, v) · q

=
An(q, p)

q

v∑n
i=2 p · (1− p)i−1

∑i−1
j=1 Pr[Bin(n, v) ≥ j] + (1− p)n · nv

. (6)

In Lemma B.1, we show that (6) is non-decreasing in v. This implies that the infimum is attained

either when v → 0 or v → 1. Thus,

v(ALGq)

v(OPT)
≥ min

{
lim
v→0

An(q, p)v

Bn(p, q)q
, lim
v→1

An(p, q)

Bn(p, q)

}
=

(1− p)(1− (1− qp)n)

p
·min

{
1

E[min{D − 1, n}]
,

1

(1− p)qn

}
,

where the second line follows by a straightforward calculation of the corresponding limits. Here

D ∼ Geom(p), and a direct calculation shows that E[min{D−1, n}] = (1−p)(1− (1−p)n)/p. This

concludes the proof.

Proof of Lemma 4.3. We analyze three cases: (i) pn < p(n + 1) < 1; (ii) pn ≤ 1 < p(n + 1); and

(iii) 1 < pn < p(n+ 1).

Case (i). Here, we have qn = qn+1 = 1. Then η1n,p = min
{
1, 1−(1−p)n

pn

}
= 1−(1−p)n

pn , where the

first equality follows simply by definition, while the second equality follows from the Bernoulli’s

inequality (1− p)n ≥ 1− pn. From here, it is immediate that η1n+1,p ≤ η1n,p.

Case (ii). Here, we have qn = 1 and qn+1 = 1/p(n+ 1). Then ηqnn,p =
1−(1−p)n

pn , and

η
qn+1

n+1,p =

(
1−

(
1− 1

n+ 1

)n+1
)
min

{
1,

1

1− (1− p)n+1

}
= 1−

(
1− 1

n+ 1

)n+1

with calculations analogous to the previous case. Note that the function (1 − (1 − p)n)/p =∑n−1
ℓ=0 (1− p)ℓ is decreasing in p. Thus, we have p ∈ [1/(n+ 1), 1/n], and

ηqnn,p ≥ 1−
(
1− 1

n

)n

≥ 1−
(
1− 1

n+ 1

)n+1

= η
qn+1

n+1,p.

Case (iii). In this case, we have qn = 1/pn and qn+1 = 1/p(n + 1). Thus, ηqnn,p = 1 −
(
1− 1

n

)n
and η

qn+1

n+1,p = 1 −
(
1− 1

n+1

)n+1
. As a byproduct of the analysis from the previous case, we have

already proved ηqnn,p ≥ η
qn+1

n+1,p. To conclude, for n > 1/p, we have qn = 1/pn so that limn→∞ ηqnn,p =

limn→∞ 1−
(
1− 1

n

)n
= 1− 1

e .

4.2 Upper Bound on Competitive Ratio

In this subsection, we prove γNA
p,ζ ≤ 1 − 1/e to complete the proof of Theorem 1.1. To do so, we

provide a family of instances with competitive ratios approaching 1− 1/e. For this hard instance,

11



we define the distribution through

F̂ (u) :=
a1
n
δ{0}(u) + a2I(0,β/n](u), (7)

where a1, a2, β ∈ R, β ≤ n, δ{0}(u) denotes the Dirac delta function centered at u = 0, and IS(·)
denotes the indicator of the set S. By approximating δ{0}(·) via n2

I[0,1/n2](·), we can easily find

a distribution F such that F−1(1 − u) ≈ F̂ (u); however, we will provide the calculations over F̂

as the calculations are cleaner. In short, F̂ defines a three-point distribution: among n draws, we

expect approximately one high item with value of a1n, β moderate items with value of a2, and the

remaining items with value of 0. With independent disruptions of probability p, the expected payoff

of the jth accepted item is scaled by (1−p)j ; thus, taking many moderate items yields geometrically

decaying value, while waiting for the single high item risks forfeiting most moderate items. We

formalize this trade-off below. Denote by Poisson(β) a Poisson distribution with parameter β. We

use the following two lemmas to characterize the value of the optimal algorithm and the value of

the single-threshold algorithm.

Lemma 4.4. When n → ∞, v(OPT) → a1(1− p) + a2
∑∞

j=1 Pr[Poisson(β) ≥ j](1− p)j.

Lemma 4.5. Let λ = λ∗ > 0 be a solution to the equation

e−λp
(
a1 + a1pλ+ a2pλ

2
)
= a1. (8)

As n grows large, the expected value of ALGλ/n converges to

lim
n→∞

v(ALGλ/n) = max

{
(1− p)a1,

(1− p)(1− e−βp)

βp
(a1 + a2β), C1

}
,

where C1 =
(1−p)(1−e−λ∗p)

λ∗p (a1 + a2λ
∗) if λ∗ ≤ β and C1 = 0 otherwise.

Let f(a1, a2, β, p, λ) := v(ALG
λ
n )/v(OPT). We aim to bound mina1,a2,β,pmaxλ f(a1, a2, β, p, λ),

which will provide an upper bound on the competitive ratio for non-adaptive algorithms.

Theorem 4.6. Given any ε > 0, for given inputs a1, a2, β, p, λ which satisfy a2 = p(e− 2)a1, and

β sufficiently large, we have v(ALG
λ
n )/v(OPT) ≤ 1− 1/e+ ε.

Proof of Theorem 4.6. Given β > 1/p sufficiently large, plugging in a2 = p(e − 2)a1 into (8) we

obtain the equation e−λ∗p
(
a1 + a1pλ

∗ + p2(e− 2)a1(λ
∗)2
)
= a1, which holds if and only if λ∗ = 1/p

for λ∗ > 0. Note that when λ∗ = 1/p, through direct comparison and monotonicity analysis, we

get

C1 ≥ max

{
(1− p)a1,

1− p

βp
(1− e−βp)(a1 + a2β)

}
.

Consequently, for the input parameters a1, a2, β, p, λ satisfying a2 = p(e − 2)a1, and β sufficiently

large, the value λ = 1/p serves as the maximizer of the function f(a1, a2, β, p, λ). Then for any

12



given ε > 0, we have

v(ALG
1
np )

v(OPT)
≤ (1− p) · (1− 1/e) · (a1 + a2/p)

a1(1− p) + a2
∑∞

j=1 Pr[Poisson(β) ≥ j](1− p)j
.

Note that the desired upper bound of 1− 1/e+ ε is only achieved when the necessary condition of∑∞
j=1 Pr[Poisson(β) ≥ j](1− p)j−1 ≥ 1/p− ε is met. We can find a sufficiently large β that ensures

the validity of the above inequality. The process of finding such a β consists of the following two

steps:

(i) Find an integer C2 such that (1− p)C2 ≤ εp/2. C2 could then be set as
⌈
log1−p (εp/2)

⌉
.

(ii) Using the integer C2 found in the previous step, we find β∗ ≥ λ such that Pr[Poisson(β∗) ≥
C2] ≥ 1− εp/2. The existence of such a β∗ is guaranteed by the intermediate value theorem.

Using conditions (i) and (ii) above, we recover the necessary condition:

∞∑
j=1

Pr[Poisson(β) ≥ j](1− p)j−1 ≥
C2∑
j=1

(
1− εp

2

)
(1− p)j−1 =

(
1− εp

2

) 1− (1− p)C2

p

≥
(
1− εp

2

)(1

p
− ε

2

)
=

1

p
− ε+

ε2p

4
≥ 1

p
− ε.

5 The Class of Adaptive Algorithms

In this section, we focus on adaptive algorithms. In §5.1, we formally define our algorithm and

present the proof of Theorem 1.2 to show that adaptivity is key, and one can improve the competitive

ratio from the non-adaptive case in the limit. In §5.2, we present the proof of Theorem 1.3 to provide

an upper bound on the competitive ratio, and we show that our derived asymptotic competitive

ratio is tight.

5.1 Quantile-Based Threshold Algorithm

For each i = 1, . . . , n, our adaptive algorithm samples a quantile qi ∈ [0, 1] from a density function

with a support in [εi−1, εi], where 0 = ε0 < ε1 < · · · < εn = 1. Then, if the observed value Xi is

at least F−1(1 − qi), the algorithm selects the value; otherwise the value is rejected. Denote this

algorithm by ALGAD.

The construction of the densities over each interval [εi−1, εi] follows a similar approach to the

one outlined in Correa et al. (2021); Perez-Salazar et al. (2025). We take some time to explain the

importance of these densities and the challenges involved in applying the method from Correa et al.

(2021). From the second characterization of v(OPT) in Proposition 3.2, the function g
(0)
n (p, q) =

(1−p)n(1−pq)n−1 is the derivative of An(p, q) = E[min{Bin(n, q), D−1}], i.e., the derivative of the
expected number of values OPT gets at quantile q. The goal of our analysis is to show that, for every

q ∈ [0, 1], the derivative of the expected number of values at quantile q that the algorithm accepts

13



is at least θn · g(0)n (p, q). If this condition holds, then we can guarantee that v(ALGAD) ≥ θn · v(OPT).
This analysis is quite stringent, as it requires specifying a valid density for every q ∈ [0, 1]. However,

the method from Correa et al. (2021) applied to the OS-UD probem only provides a density over

the interval [0, p], leaving (1−p, 1] unassigned. To address this limitation, we use a direct approach

and construct densities that cover the interval [0, 1] completely in such a way that the competitive

ratio of ALGAD converges to θ∗.

We now explain the density functions for ALGAD. Let 0 = ε0 < ε1. For θn > 0, consider the

following function β1,n(p, q) := −θnI[ε0,ε1](q)(g
(0)
n )′(p, q)/(1 − p). Note that β1,n ≥ 0. If we want

to sample q1 from β1,n(p, ·), then we must have 1 =
∫ 1
0 β1,n(p, q) dq, which happens if and only if

1
nθn

= 1 − (1 − pε1)
n−1. From here, ε1 is decreasing in θn; thus, there is θn such that ε1 ≤ 1. In

general, let βi,n(p, q) := −θnI[εi−1,εi](q)(g
(0)
n )′(p, q)/(1−p) such that the following system is satisfied

for 0 = ε1 < ε2 < · · · < εk ≤ 1, and for the largest k possible:∫ 1

0
β1,n(p, q) dq = 1, (9)∫ 1

0
βi+1,n(p, q) dq =

∫ 1

0
βi,n(p, q)(1− pq) dq ∀i < k. (10)

We already know that we can satisfy this system with k = 1. We seek to satisfy this system for

k = n and εn = 1. Then, our densities for ALGAD become βi,n(p, q)/
∫ 1
0 βi,n(p, q) dq for all i ∈ [n].

Lemma 5.1. There is a unique θn > 0 such that the system (9) − (10) has a solution for k = n

and εn = 1.

We present the proof of Lemma 5.1 after establishing the following guarantee on the competitive

ratio of ALGAD.

Theorem 5.2. Let θn > 0 as in Lemma 5.1. Using the densities βi,n/
∫ 1
0 βi,n(p, q) dq for ALGAD

guarantees
v(ALGAD)

v(OPT)
≥
(
1− (1− p)n−1pn

1− (1− p)n

)
· θn. (11)

Proof of Theorem 5.2. Let ri be the probability that the algorithm observes Xi, i ∈ [n]. Then, we

have

v(ALGAD) =

n∑
i=1

ri

∫ 1

0

βi,n(p, u)∫ 1
0 βi,n(p, q) dq

(1− p)

∫ ∞

F−1(1−u)
x dF (x) du,

where βi,n(p, u)
/∫ 1

0 βi,n(p, q) dq is the conditional adaptive density of the quantile used when ob-

serving Xi, and the inner integral (1 − p)
∫∞
F−1(1−u) x dF (x) is the expected marginal contribution

at that step given quantile u, with (1− p) accounting for survival upon acceptance. Via induction,

we have r1 = 1, and for i > 1, we have ri =
∫ 1
0 βi−1,n(p, q)(1 − pq) dq. Hence, using the system

14



(9)− (10), we obtain

v(ALGAD) =
n∑

i=1

∫ 1

0
βi,n(p, u) · (1− p)

∫ q

0
F−1(1− q) dq du (12)

= θn

∫ 1

0
F−1(1− q)g(0)n (p, q) dq − θn

∫ 1

0
F−1(1− q) · n(1− p)n dq, (13)

where (12) follows from a change of variable and using ri =
∫ 1
0 βi,n(p, q) dq for i > 1. Then, using

a ratio comparison, we have∫ 1
0 F−1(1− q)g

(0)
n (p, 1) dq∫ 1

0 F−1(1− q)g
(0)
n (p, q)dq

≤ (1− p)n−1pn

1− (1− p)n
≤ 1, (14)

and applying this bound in (13), we obtain

v(ALGAD) ≥ θn ·
(
1− (1− p)n−1pn

1− (1− p)n

)∫ 1

0
F−1(1−u)g(0)n (p, u) du = θn ·

(
1− (1− p)n−1pn

1− (1− p)n

)
v(OPT),

which concludes the proof.

We now present the proof of Lemma 5.1. The idea is to generalize the monotonicity of ε1 as

a function of θn to εi for all i. To this end, we first present an alternative characterization of the

system (9)− (10).

Proof of Lemma 5.1. We start with an intermediate result. Given a fixed k ≤ n, we claim that for

all i ≤ k, the following recursion holds:

g(0)n (p, εi)− g(0)n (p, εi−1) = −1− p

θn
− p

(
εi−1 · g(0)n (p, εi−1)−

∫ εi−1

0
g(0)n (p, q) dq

)
. (15)

We proceed by induction. The base case i = 1 can be verified easily. Assuming that (15) holds for

some i < k, by the fundamental theorem of calculus, we have

g(0)n (p, εi+1)−g(0)n (p, εi) =

∫ εi+1

εi

(g(0)n )′(p, q) dq =

∫ εi

εi−1

(g(0)n )′(p, q)(1− pq) dq (per (10))

=

∫ εi

εi−1

(g(0)n )′(p, q) dq − p

∫ εi

εi−1

(g(0)n )′(p, q)q dq

= g(0)n (p, εi)− g(0)n (p, εi−1)− pεi · g(0)n (p, εi) + pεi−1 · g(0)n (p, εi−1) + p

∫ εi

εi−1

g(0)n (p, q) dq

= −1− p

θn
+ p

∫ εi

0
g(0)n (p, q) dq − pεi · g(0)n (p, εi),

where the last equality comes from the induction hypothesis.

Note that from (15), we obtain that εi < εi+1 and (g
(0)
n )′(p, εi+1)ε

′
i+1 = 1−p

θ2n
+ (g

(0)
n )′(p, εi)(1−

pεi)ε
′
i, where the derivative is with respect to θn. From here, we see that all εi’s are decreasing in

15



θn. Thus, by making θn sufficiently large, we can sequentially define εk+1, εk+2, · · · ≤ 1, until we

reach εn = 1. This concludes the proof of Lemma 5.1.

Asymptotic Analysis. We now show that lim infn→∞ γAD
n,p,0 ≥ θ∗ ≈ 0.745. Let fn(p, λ) :=

g
(0)
n (p, λ/n)/(1− p)n. Then, (15) becomes

fn(p, λi)− fn(p, λi−1)

1/n
= − 1

θn
− p

(
λi−1 · fn(p, λi)−

∫ λi−1

0
fn(p, w)dw

)
, (16)

where λi = nεi for all i. Note that θn ∈ [0, 1]. Then, there exists a subsequence that converges

to some θ̂ ∈ [0, 1]. For simplicity, we abuse notation and denote this subsequence by θn so that

θn → θ̂ ∈ [0, 1]. Now, doing a linear piece-wise approximation of λi via a function λn(x) such that

λi = λn(i/n) and taking the limit in n of (16), we obtain

f(p, λ(x))′ = −1

θ̂
− p

(
λ(x) · f(p, λ(x))−

∫ λ(x)

0
f(p, w)dw

)
= 1− 1

θ̂
− pλ(x)e−λ(x)p − e−λ(x)p,

where f(p, λ) = limn→∞ fn(p, λ) = e−λp. Furthermore, we have conditions λ(0) = 0 and limx→1 λ(1) =

+∞. Performing the change of variable y(x) = e−λ(x)p, we obtain the following system:

y′(x) = 1− 1

θ̂
+ (ln y(x)− 1)y(x),

y(0) = 1, lim
x→1

y(x) = 0.

This is exactly the Hill and Kertz equation presented in §3, which has a solution if and only if

θ̂ = θ∗ ≈ 0.745, which yields that lim infn θn = θ∗. Finally per Theorem 5.2, for any p ∈ (0, 1), we

have

lim inf
n→∞

γAD
n,p,0 ≥ lim inf

n→∞
θn ·

(
1− (1− p)n−1pn

1− (1− p)n

)
= θ∗.

5.2 Upper Bound

In this subsection, we prove Theorem 1.3 to establish that the lower bound derived in the previous

section is optimal. Fix p, ε ∈ (0, 1) and n sufficiently large so that n ≥
⌈
− log(y(1−ε))

p

⌉
. We define

the following distribution through F̃ (u), where y(·) is the solution to the Hill and Kertz equation:

F̃ (u) :=
θ∗

(1− p)n
δ{0}(u)−

p

1− p

∫ 1−ε

y−1(e−pnu)

1

y′(s)
ds 1(0,1](u).

Similar to the hard instance presented in §4.2, the distribution comprises a spike when u is close

to 0, together with a monotonically decreasing continuous component. Consequently, the largest

contributions occur for small u, and the quantile decays rapidly thereafter. The instance is designed

16



to induce a tension between capturing more mass immediately and preserving continuation value

in the presence of disruption–induced discounting. We analyze this trade-off through a continuous

Bellman equation for any online optimal algorithm, where the optimal control equates marginal

benefit and discounted continuation cost. What follows is the formalization of this intuition.

Given ε > 0, denote the value of the optimal algorithm by vε(OPT) under F̃ (u) that is defined

above. The following proposition provides a characterization of vε(OPT).

Proposition 5.3. vε(OPT) = θ∗ −
∫ 1−ε
0

1
y′(s)

(
1−

(
1 + log(y(s))

n

)n)
ds.

We then characterize the maximum value that can be obtained by any online algorithm. Consider

the following dynamic program, where for any n ≥ 1 and p ∈ (0, 1), Dε
i is the value at observing

Xi, i ∈ [n+ 1], with the convention Xn+1 = 0:

Dε
i = sup

q∈[0,1]

{
(1− p)

∫ q

0
F̃ (u) du+ (1− pq)Dε

i+1

}
,∀i ∈ [n] and Dε

n+1 = 0. (17)

In particular, we are interested in analyzing the dynamic program solution D0
i for all i ∈ [n]. We

now examine its continuous approximate counterpart (denoted by d(x)) through Lemma 5.4 and

link it back to discrete valued D0
i via Lemma 5.5. In order to find d(0), we rewrite (17) from an

ODE perspective. Consider the following Bellman equation:

−d′(x) = sup
µ∈[0,∞]

{∫ µ

0
h(u) du− pµd(x)

}
, (18)

where h(u) := θ∗ · δ{0}(u)− p
∫ 1
y−1(e−pu) (1/y

′(s)) dsI(0,1)(u). In what follows, we show that for any

x ∈ (0, 1], (18) can be satisfied by

d(x) =

∫ 1

x
− 1

y′(s)
ds and µ = − log(y(x))

p
. (19)

Lemma 5.4. (19) provides a unique solution to the Bellman equation (18), when x ∈ (0, 1].

Next, we connect the continuous dynamic program value (denoted by d(i/n)) with Dε
i .

Lemma 5.5. Fix σ ∈ (0, 1) and n > − log(y(1− σ)). Let

ησ :=
nσ − log(y(1− σ))(1− σ)

(1− σ) (n+ log(y(1− σ)))
. (20)

Let D̃i := (1 + ησ) · d((1− σ)i/n)). Then for any i ∈ [n], we have Dε
i ≤ D0

i ≤ D̃i.

Proof of Lemma 5.5. The first inequality follows from observing that F̃ (u) is a positive, non-

increasing function in ε. Thus, per (17), it holds that Dε
i ≤ D0

i for any ε > 0. To prove the

second inequality, we use the following claim.

Claim 5.6. For any q ∈ [0, 1], we have (1− p)
∫ q
0 F̃ (u) du+ (1− pq)D̃i+1 ≤ D̃i.

17



Now we are ready to show the second inequality. We proceed by induction. Note that for some

qi ∈ [0, 1], the Bellman equation for D0
i is satisfied with equality:

D0
i = (1− p)

∫ qi

0
F̃ (u) du+ (1− pqi)D

0
i+1

≤ (1− p)

∫ qi

0
F̃ (u) du+ (1− pqi)D̃

0
i+1 ≤ D̃i (per induction hypothesis and Claim 5.6)

Finally, we compare the value of the dynamic program and the optimal algorithm. Specifically,

we consider the ratio Dε
1/v

ε(OPT), and analyze its behavior in the asymptotic regime. Noting that

Dε
1 ≤ D0

1 ≤ (1 + ησ)d((1− σ)/n) and ησ → σ/(1− σ) when n → ∞, we have

lim
n→∞

Dε
1

vε(OPT)
≤ lim

n→∞

(1 + ησ) · d((1− σ)/n))

vε(OPT)
=

1

1− σ

∫ 1
0 − 1

y′(s)ds

θ∗ −
∫ 1−ε
0

1−y(s)
y′(s) ds

,

where in the last inequality we use Proposition 5.3 and Lebesque’s dominated convergence theorem.

This bound holds for any σ ∈ (0, 1). Thus,

γAD
p,0 ≤

∫ 1
0 − 1

y′(s)ds

θ∗ −
∫ 1−ε
0

1−y(s)
y′(s) ds

for any ε ∈ (0, 1). Then letting ε → 0, we see that the right-hand side tends to θ∗ per (Liu et al.,

2020, Theorem 3.11), which concludes the proof of Theorem 1.3.

6 Partial Recovery

In this section, we examine the OS-UD problem under partial recovery with parameter ζ ∈ [0, 1].

The proofs of Theorems 1.1 and 1.2 turn out to be analogous to those in the case ζ = 0. For

completeness, we present the main steps of the arguments, while omitting the full details to avoid

redundancy.

6.1 Non-adaptive Algorithm

We first characterize the value of the non-adaptive algorithm similar to Lemma 4.2.

Proposition 6.1. We have v(ALGq) =
(
An(q, p) + ζ

(
1− (1− qp)n

)) (∫ 1
0 r(v)min{v, q}dv

)
/q.

Proof of Proposition 6.1. Relative to (4), the only change is that a disruption upon the i-th accep-

tance yields a fraction ζ of the last item; hence, an additive term ζ is included when a disruption

occurs:

v(ALGq) =
n∑

a=1

Pr[Bin(n, q) = a]

(
a∑

i=1

p(1− p)i−1
[
(i− 1) + ζ

]
+ a(1− p)a

)
E[X | X ≥ τ ]

18



=
(
An(q, p) + ζ

n∑
a=0

Pr[Bin(n, q) = a] (1− (1− p)a)
)∫∞

τ xf(x)dx

Pr(X ≥ τ)

=
(
An(q, p) + ζ [1− (1− qp)n]

) ∫ 1
0 r(v) min{v, q}dv

q
,

where the last equality follows by the same procedure as in the proof of Lemma 4.2.

Combining Propositions 3.2 and 6.1 yields the following ratio between v(ALGq) and v(OPT):

v(ALGq)

v(OPT)
=

(
An(q, p) + ζ

(
1− (1− qp)n

)) (∫ 1
0 r(v)min{v, q}dv

)
/q∫ 1

0

(
Bn(p, v) + ζ

[
1− (1− vp)n

])
r(v)dv

.

The same monotonicity arguments as in the proof of Lemma 4.2 imply that the infimum is attained

when v → 0 or v → 1. Consequently,

v(ALGq)

v(OPT)
≥ min

{
lim
v→0

(
An(q, p) + ζ

(
1− (1− qp)n

))
v(

Bn(p, v) + ζ
[
1− (1− vp)n

])
q
, lim
v→1

(
An(q, p) + ζ

(
1− (1− qp)n

))(
Bn(p, v) + ζ

[
1− (1− vp)n

])}

=
(1− p+ pζ)(1− (1− qp)n)

p
·min

{
1

[(1− p)/p+ ζ] (1− (1− p)n)
,

1

(1− p+ ζp)qn

}
,

This matches Lemma 4.2 by canceling common factors that appear both in numerator and denom-

inator. Similar to Lemma 4.3, the same 1− 1/e bound holds when no recovery is allowed.

Remark 6.2. For the upper bound, we may reuse the distribution we defined for a hard instance

from §4.2. Since both v(ALG) and v(OPT) are scaled by the same factor
(
(1− p+ pζ)/(1− p)

)
, the

ratio is preserved, and the remainder of the analysis follows.

6.2 Adaptive Algorithm

We first characterize the value of the adaptive algorithm in the partial recovery case, in parallel to

Theorem 5.2. Recall that g
(ζ)
n (p, q) = n

(
1− (1− ζ)p

)
(1− pq)n−1. Define the adaptive scheme via

β
(ζ)
i,n (p, q) := −θnI[εi−1,εi](q)(g

(ζ)
n )′(p, q)/(1 − (1 − ζ)p), where 0 = ε1 < ε2 < · · · < εk ≤ 1 is chosen

for the largest k possible so that∫ 1

0
β
(ζ)
1,n(p, q) dq = 1,

∫ 1

0
β
(ζ)
i+1,n(p, q) dq =

∫ 1

0
β
(ζ)
i,n (p, q) (1− pq) dq, ∀i < k.

Using the expression for v(OPT) from Proposition 3.2, we obtain the following:

Proposition 6.3. v(ALGAD) = θn v(OPT) − θn
∫ 1
0 F−1(1− q)n

(
1− (1− ζ)p

)
(1− p)n−1 dq.

The proof is straightforward with v(ALGAD) =
∑n

i=1

∫ 1
0 β

(ζ)
i,n (p, u) (1 − p)

∫ u
0 F−1(1 − q) dq du and

using the system of recursions above. Substituting v(OPT) =
∫ 1
0 F−1(1 − q) g

(ζ)
n (p, q) dq yields

19



Proposition 6.3. Thus, the ratio between v(ALGAD) and v(OPT) can be written as

v(ALGAD)

v(OPT)
=

θn
∫ 1
0 F−1(1− q)g

(ζ)
n (p, q) dq − θn

∫ 1
0 F−1(1− q)n

(
1− (1− ζ)p

)
(1− p)n−1dq∫ 1

0 F−1(1− q)g
(ζ)
n (p, q)dq

. (21)

The conclusion of Theorem 5.2 continues to hold, since the ratio comparison in (14) is unchanged

after canceling out
(
1 − (1 − ζ)p

)
. Note that the connection still holds, where g

(ζ)
n (p, q) is the

derivative of
(
An(q, p)+ ζ

(
1− (1− qp)n

))
, i.e., the derivative of the expected number of values OPT

gets at quantile at most q plus a fraction ζ recovery. From here, we adopt the same analysis from

the base model, and we observe that the competitive ratio expression is unaffected. The proof is

analogous to the base case and is therefore omitted for brevity.

Remark 6.4. For the upper bound, we redefine the distribution F́ (u) in §5.2 as:

F̃ (u) :=
θ∗

(1− p+ pζ)n
δ{0}(u)−

p

1− p+ pζ

∫ 1−ε

y−1(e−pnu)

1

y′(s)
ds 1(0,1](u).

Under this definition and the new partial-recovery dynamics, the adaptive and optimal algorithms

attain the same value, and the remainder of the analysis follows unchanged.

7 Maximizing the Largest Value Until Disruption

In this section, we consider the following variant of the OS-UD problem: if S represents the

set of indices of values selected by ALG before a disruption, then the value of the algorithm ALG is

vmax(ALG) = E[maxi∈S{Xi}]. We compare the value of an algorithm against the optimal clairvoyant

algorithm OPT that knows the values upfront but not the disruption; hence, it is immediate that

vmax(OPT) = (1 − p)E[X(1)]. Our main result is a constant competitive ratio, summarized in the

following result.

Theorem 7.1. For any n ≥ 1, supALG infF∈F
vmax(ALG)
vmax(OPT)

≥ maxλ≤nmin
{

1−e−pλ

pλ , 1− e−λ
}
≥ 1−1/e.

To prove this result, we utilize a non-adaptive single-threshold algorithm that is quantile-based.

Similar to our analysis of NA in §4, we can provide an exact formula for vmax(ALG
q) where ALGq is

an algorithm that receives a quantile q ∈ [0, 1] and uses the threshold τ such that q = Pr(X ≥ τ).

We provide a detailed proof in §7.1.
The lower bound maxλ≤nmin

{
1−e−pλ

pλ , 1− e−λ
}

converges to 1 − e−λ(p) as n → ∞, where

λ = λ(p) is the unique solution to 1 − e−pλ = pλ(1 − e−λ). The following result shows that this

lower bound is essentially tight for the class of non-adaptive algorithms.

Proposition 7.2. For any non-adaptive algorithm ALG, infF∈F ,n≥1
vmax(ALG)
vmax(OPT)

≤ 1− e−λ(p).

To prove this result, we provide a hard instance similar to the one provided for the class NA

in §4. We defer the details to Appendix D.1. In Figure 1, we present the plot of 1 − e−λ(p). We

note that, numerically, it is a decreasing function of p.

20



Figure 1: Competitive ratio lower bound computed from (22) for p ∈ [0, 1).

Remark 7.3. We can consider an alternative model where S is the set of all indices of values

selected by ALG including the index where the disruption occurs. Our results remain valid for p < 1.

We omit the details for brevity.

Remark 7.4. We note that supALG vmax(ALG) can be computed via dynamic programming. However,

any natural formulation must track both the current retained maximum x and the remaining number

of items i. The optimal policy takes the form of a threshold policy τi,x, yet characterizing or even

approximating these thresholds to allow a competitive analysis remains a challenging problem, which

we leave as an open question. A similar challenge is faced in prophet inequalities, where multiple

items can be selected (e.g., see Assaf and Samuel-Cahn (2000); Harb (2025)).

7.1 Proof of Theorem 7.1

We use following two lemmas to characterize the expected values of the optimal algorithm and the

single-threshold algorithm using the function r(v) > 0, where
∫ 1
u r(v)dv = F−1(1− u).

Lemma 7.5. We have vmax(OPT) = (1− p)
∫ 1
0 (1− (1− v)n) · r(v)dv.

The optimal policy simply targets the largest value. With probability 1 − p the item is not

disrupting, and the expected collected value equals E[X(1)]; hence Lemma 7.5 follows immediately

from Claim A.1.

Lemma 7.6. We have vmax(ALG
q) =

∑n
a=1 Pr[Bin(n, q) = a]

(∑a−1
k=0 p(1− p)k µk + (1− p)a µa

)
, where

µl := E[max{X1, . . . , Xl}|X1 ≥ τ, . . . , Xl ≥ τ ] =
(
1/ql

) ∫ 1
0

(
ql − (q −min{q, v})l

)
r(v)dv.

The proof follows a similar analysis to Lemma 4.2, but the gain from an accepted item depends

on the realized disruption horizon; instead of obtaining E[X | X ≥ τ ] from each acceptance, the

expected value is E [max{X1, . . . , Xl} | X1 ≥ τ, . . . , Xl ≥ τ ], where l is the number of selections

survived without a disruption. Full proof for Lemma 7.6 is provided in §D. Let

21



WALG(v) :=


(1− p)

[
1− (1− q)n

]
, if v ≥ q,

(1− p) (v/q)

p+ (1− p) (v/q)

[
1−

(
1− qp− (1− p) v

)n]
, if 0 < v < q.

We reorganize the expression given in Lemma 7.6 into a single integral and obtain a representation

of vmax(ALG
q) using the shorthand notation WALG(v):

vmax(ALG
q) =

∫ 1

0
WALG(v) r(v) dv.

Finally, we compare vmax(ALG
q) and vmax(OPT):

vmax(ALG
q)

vmax(OPT)
=

∫ 1
0 WALG(v) · r(v)dv

(1− p)
∫ 1
0 (1− (1− v)n) · r(v)dv

≥ min

 inf
v∈[0,q)

(1− p) (v/q)

p+ (1− p) (v/q)

[
1−

(
1− qp− (1− p) v

)n]
(1− p)(1− (1− v)n)

, inf
v∈[q,1]

(1− p)
[
1− (1− q)n

]
(1− p)(1− (1− v)n)


≥ min

 lim
v→0

(v/q)

p+ (1− p) (v/q)

[
1−

(
1− qp− (1− p) v

)n]
(1− (1− v)n)

, lim
v→1

1− (1− q)n

1− (1− v)n


= min

{
1− (1− qp)n

npq
, 1− (1− q)n

}
≥ min

{
1− e−pλ

pλ
, 1− e−λ

}
. (22)

Here, the second inequality uses the monotonicity of both functions (we prove that the first term

is non-decreasing in the Lemma D.1), and the final inequality follows by substituting q = λ/n.

8 Final Remarks

We introduced the Online Selection with Uncertain Disruption (OS-UD) problem, which captures

unexpected disruptions resulting from serving requests. We first provided a non-adaptive single-

threshold algorithm with a tight competitive ratio of 1− 1/e. We then analyzed the general class

of adaptive threshold algorithms and showed that an asymptotic competitive ratio of θ∗ ≈ 0.745 is

attainable, and this is tight.

Even though in this work we focus on the case of fixed disruption probability p, we can use the

techniques developed for the non-adaptive single-threshold algorithms to analyze a rare disruption

regime, in particular, the case when p = α/n with α ≤ 1. Indeed, letting q = 1 in Lemma 4.2

and using the fact that 1 − x ≤ e−x for all x ∈ R, we obtain the following lower bound on the

competitive ratio:
(
1−e−α

α

)
min

{
1, α

1−(1−α/n)n

}
= (1 − e−α)/α. This competitive ratio is larger

than 1 − 1/e for α ∈ [0, 1), improving the ratio from the non-adaptive case for fixed p. Moreover,

this asymptotic competitive ratio converges to 1 as α → 0.

It remains open the question of determining a constant lower bound for γAD
n,p,ζ for all n ≥ 1.

22



Using the linear programming approach in Perez-Salazar et al. (2025) (see also Jiang et al. (2023)),

we can approximate γAD
n,p,ζ numerically (see Figure 2). We empirically observe that as n grows,

γAD
n,p,ζ converges to θ∗. We also note that, for finite n, when the disruption probability is close to

1, the problem aligns closely with the classical single-selection i.i.d. prophet inequality problem.

Indeed, although OS-UD allows multiple selections, if p = 1 − ε with ε ≈ 0, the expected gain

beyond the first selection is multiplied by O(ε2). Therefore, this regime yields limited new insight,

as it reduces to the single-selection case.

Figure 2: Estimated competitive ratios using linear programming formulation in Perez-Salazar et al.
(2025) for p ∈ [0, 1].

We have so far focused on the i.i.d. case of the OS-UD problem, where all values share the

same distribution. It is natural to consider the case, where the values remain independent, but are

not necessarily identically distributed. In this case, using an approach akin to contention resolution

schemes (see, e.g., (Alaei, 2014)), we can prove a competitive ratio of at least 1/2, and this bound

is tight (see §E).
In this paper, we modeled the disruption as a memoryless process. A natural extension would

be to consider broader classes of disruption processes. For example, the disruption probability

might increase as more values are being accepted, modeling a system that wears out over time;

conversely, it could also decrease, representing a system that becomes more reliable over time.

However, analyzing such variants is non-trivial, as optimal algorithms must account for the number

of selections made—a known challenge in multiple-selection problems and an active area of research

(e.g., see Alaei (2014); Jiang et al. (2023); Brustle et al. (2025)).

Our paper sheds light on quantifying the price of having limited information, and we attempt

to study the value of flexibility by showing how much adaptivity improves the competitive ratio

over non-adaptive algorithms. An alternative way to measure the value of flexibility would be to

benchmark non-adaptive algorithms directly against the optimal online policy. While conceptually

compelling, this is analytically delicate; it remains an open question to establish such tight and

distribution-free comparisons by exploiting the structure of the optimal online policy characterized

by a dynamic program.

23



Lastly, OS-UD assumes a single disruption event that terminates service with partial recov-

ery on the last value. Another interesting direction is to consider models, in which a penalty is

introduced on the last acceptance if a disruption occurs—for example, a fixed charge c > 0 or a

linear penalty ϕXlast, akin to those studied in knapsack settings (e.g., see Dean et al. (2008); Fu

et al. (2018)). In such cases the realized payoff may become negative, and the standard compet-

itive benchmark can be ill-posed. To obtain meaningful guarantees, one should adopt alternative

performance criteria, e.g. regret-type guarantees such as minimizing E[v(OPT) − v(ALG)]. These

formulations are natural in revenue-management applications (e.g., airline overbooking or ticketing

with compensation for denials), where the objective is expected revenue minus penalties subject to

service constraints.

References

S. Alaei. Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buyers.

SIAM Journal on Computing, 43(2):930–972, 2014.

R. Alijani, S. Banerjee, S. Gollapudi, K. Munagala, and K. Wang. Predict and match: Prophet

inequalities with uncertain supply. Proceedings of the ACM on Measurement and Analysis of

Computing Systems, 4(1):1–23, 2020.

A. Allouah, A. Bahamou, and O. Besbes. Optimal pricing with a single point. Management Science,

69(10):5866–5882, 2023.

A. Aouad and Ö. Saritaç. Dynamic stochastic matching under limited time. In Proceedings of the

21st ACM Conference on Economics and Computation, pages 789–790, 2020.

N. Arnosti and W. Ma. Tight guarantees for static threshold policies in the prophet secretary

problem. Operations research, 71(5):1777–1788, 2023.

D. Assaf and E. Samuel-Cahn. Simple ratio prophet inequalities for a mortal with multiple choices.

Journal of applied probability, 37(4):1084–1091, 2000.

J. Brustle, S. Perez-Salazar, and V. Verdugo. Splitting guarantees for prophet inequalities via

nonlinear systems. Mathematics of Operations Research, 2025.

S. Chawla, J. D. Hartline, and R. Kleinberg. Algorithmic pricing via virtual valuations. In Pro-

ceedings of the 8th ACM Conference on Electronic Commerce, pages 243–251, 2007.

S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan. Multi-parameter mechanism design and

sequential posted pricing. In Proceedings of the forty-second ACM symposium on Theory of

computing, pages 311–320, 2010.

S. Chawla, N. Devanur, and T. Lykouris. Static pricing for multi-unit prophet inequalities. Oper-

ations Research, 72(4):1388–1399, 2024.

24



M. C. Cohen, P. W. Keller, V. Mirrokni, and M. Zadimoghaddam. Overcommitment in cloud

services: Bin packing with chance constraints. Management Science, 65(7):3255–3271, 2019.

J. Correa, P. Foncea, D. Pizarro, and V. Verdugo. From pricing to prophets, and back! Operations

Research Letters, 47(1):25–29, 2019.

J. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, and T. Vredeveld. Posted price mechanisms

and optimal threshold strategies for random arrivals. Mathematics of operations research, 46(4):

1452–1478, 2021.

H. A. David and H. N. Nagaraja. Order statistics. John Wiley & Sons, 2004.

B. C. Dean, M. X. Goemans, and J. Vondrák. Approximating the stochastic knapsack problem:

The benefit of adaptivity. Mathematics of Operations Research, 33(4):945–964, 2008.

S. Delong, A. Farhadi, R. Niazadeh, B. Sivan, and R. Udwani. Online bipartite matching with

reusable resources. Mathematics of Operations Research, 49(3):1825–1854, 2024.

B. Epstein and W. Ma. Selection and ordering policies for hiring pipelines via linear programming.

Operations Research, 72(5):2000–2013, 2024.

Y. Feng, B. Li, H. Li, X. Wu, and Y. Wu. Iid prophet inequality with a single data point. Artificial

Intelligence, 341:104296, 2025.

H. Fu, J. Li, and P. Xu. A PTAS for a Class of Stochastic Dynamic Programs. In 45th International

Colloquium on Automata, Languages, and Programming (ICALP 2018), volume 107 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 56:1–56:14, Dagstuhl, Germany, 2018.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-076-7.

V. Goyal and R. Ravi. A ptas for the chance-constrained knapsack problem with random item

sizes. Operations Research Letters, 38(3):161–164, 2010.

V. Gupta. Greedy algorithm for multiway matching with bounded regret. Operations Research, 72

(3):1139–1155, 2024.

M. T. Hajiaghayi, R. Kleinberg, and T. Sandholm. Automated online mechanism design and

prophet inequalities. In Proceedings of the 22nd National Conference on Artificial Intelligence

- Volume 1, AAAI’07, page 58–65, Vancouver, British Columbia, Canada, 2007. AAAI Press.

ISBN 9781577353232.

E. Harb. New prophet inequalities via poissonization and sharding. In Proceedings of the 2025

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1222–1269. SIAM, 2025.

S. He, Y. Wei, J. Xu, and S. H. Yu. Online resource allocation without re-solving: The effectiveness

of primal-dual policies. Available at SSRN, 2025.

25



T. P. Hill and R. P. Kertz. Comparisons of Stop Rule and Supremum Expectations of I.I.D. Random

Variables. The Annals of Probability, 10(2):336 – 345, 1982.

T. P. Hill and R. P. Kertz. A survey of prophet inequalities in optimal stopping theory. Contemp.

Math, 125:191–207, 1992.

T. P. Hill and U. Krengel. Minimax-optimal stop rules and distributions in secretary problems.

The Annals of Probability, pages 342–353, 1991.

J. Jiang, W. Ma, and J. Zhang. Tightness without counterexamples: A new approach and new

results for prophet inequalities. In Proceedings of the 24th ACM Conference on Economics

and Computation, EC ’23, page 909, New York, NY, USA, 2023. Association for Computing

Machinery. ISBN 9798400701047.

S. Kerimov, I. Ashlagi, and I. Gurvich. Dynamic matching: Characterizing and achieving constant

regret. Management Science, 70(5):2799–2822, 2024.

S. Kerimov, I. Ashlagi, and I. Gurvich. On the optimality of greedy policies in dynamic matching.

Operations Research, 73(1):560–582, 2025.

R. P. Kertz. Stop rule and supremum expectations of iid random variables: a complete comparison

by conjugate duality. Journal of multivariate analysis, 19(1):88–112, 1986.

U. Krengel and L. Sucheston. Semiamarts and finite values. Bulletin of the American Mathematical

Society, 83(4):745 – 747, 1977.

A. Liu, R. P. Leme, M. Pal, J. Schneider, and B. Sivan. Variable decomposition for prophet

inequalities and optimal ordering, 2020.

W. Ma. Improvements and generalizations of stochastic knapsack and markovian bandits approxi-

mation algorithms. Mathematics of Operations Research, 43(3):789–812, 2018.

A. Mehta and D. Panigrahi. Online matching with stochastic rewards. In Proceedings of the 2012

IEEE 53rd Annual Symposium on Foundations of Computer Science, FOCS ’12, page 728–737,

USA, 2012. IEEE Computer Society. ISBN 9780769548746.

P. Naor. The regulation of queue size by levying tolls. Econometrica: journal of the Econometric

Society, pages 15–24, 1969.

S. Perez-Salazar and V. Verdugo. Optimal guarantees for online selection over time, 2024.

S. Perez-Salazar, I. Menache, M. Singh, and A. Toriello. Dynamic resource allocation in the cloud

with near-optimal efficiency. Operations Research, 70(4):2517–2537, 2022.

S. Perez-Salazar, M. Singh, and A. Toriello. The iid prophet inequality with limited flexibility.

Mathematics of Operations Research, 2025.

26



E. Samuel-Cahn. Comparison of threshold stop rules and maximum for independent nonnegative

random variables. The Annals of Probability, 12(4):1213–1216, 1984. ISSN 00911798, 2168894X.

E. Samuel-Cahn. Optimal stopping with random horizon with application to the full-information

best-choice problem with random freeze. Journal of the American Statistical Association, 91

(433):357–364, 1996.

A. N. Shiryaev. Optimal stopping rules, volume 8. Springer Science & Business Media, Berlin,

Germany, 2007.

M. Sion. On general minimax theorems. Pacific Journal of Mathematics, 1958.

J. A. Van Mieghem. Dynamic scheduling with convex delay costs: The generalized c— mu rule.

The Annals of Applied Probability, pages 809–833, 1995.

Y. Wei, J. Xu, and S. H. Yu. Constant regret primal-dual policy for multi-way dynamic matching. In

Abstract Proceedings of the 2023 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems, pages 79–80, 2023.

J. Zhang and P. Jaillet. Secretary problems with random number of candidates: How prior distri-

butional information helps, 2023.

27



A Missing Proofs from Section 3

Proof of Proposition 3.1. First, note that τn = 0, since accepting always brings a non-negative

value. Assume that an optimal algorithm, denoted by ALGOPT, has τi < τi+1 for some i ∈ [n− 1].

Consider the following alternative algorithm ALGALT that swaps these two thresholds, i.e., the

alternative algorithm accepts Xi with threshold τi+1, accepts Xi+1 with threshold τi, and rest of

the thresholds remain unchanged. Denote by v(ALGOPT) and v(ALGALT) the expected total values

collected under these two algorithms. Denote the expected total value obtained by both algorithms

before observing the ith value by v[1,...,i−1]. Conditioned on observing the (i + 2)th value, denote

the expected total value obtained by both algorithms starting from observing (i + 2)th value by

v[i+2,...,n]. Let Xτi := E[Xi|Xi ≥ τi] and pi := Pr[Xi ≥ τi]. Finally, let pr be the probability that

the algorithm observes value Xi, and ci = v[1,...,i−1] + pr(1 − pi+1p)(1 − pip)v[i+2,...,n]. Then the

expected total values for both algorithms can be written as

v(ALGOPT) = ci + prX
τipi(1− p+ pζ) + pr(1− pip)X

τi+1pi+1(1− p+ pζ),

v(ALGALT) = ci + prX
τi+1pi+1(1− p+ pζ) + pr(1− pi+1p)X

τipi(1− p+ pζ),

which yields v(ALGALT)− v(ALGOPT) = pr(1− p+ pζ)ppipi+1(Xτi+1 −Xτi) ≥ 0. Thus, one can con-

struct an alternative algorithm that employs a non-increasing sequence of thresholds by iteratively

swapping thresholds, which achieves optimality.

Proof of Proposition 3.2. The first equality follows immediately from the following characterization

of v(OPT), together with the subsequent claim, whose proof is provided at the end of the current

proof.

v(OPT) =
n∑

i=1

p(1− p)i−1

 i−1∑
j=1

E[X(j)] + ζ E[X(i)]

 + (1− p)n
n∑

j=1

E[X(j)].

Claim A.1. For any j ∈ [n], E[X(j)] =
∫ 1
0 Pr[Bin(n, v) ≥ j] · r(v) dv, where r(v) > 0 satisfies∫ 1

u r(v) dv = F−1(1− u).

To prove the second equality, we note that

v(OPT) =

n∑
i=2

p(1− p)i−1
i−1∑
j=1

∫ 1

0
F−1(1− q) (1− q)n−jqj−1 j

(
n

j

)
dq

+ (1− p)n
n∑

j=1

∫ 1

0
F−1(1− q) (1− q)n−jqj−1 j

(
n

j

)
dq

+ ζ

n∑
i=1

p(1− p)i−1

∫ 1

0
F−1(1− q) (1− q)n−1 q i−1 i

(
n

i

)
dq

=

∫ 1

0
F−1(1− q)

n∑
j=1

(1− q)n−jqj−1 j

(
n

j

)(
(1− p)j + ζp(1− p)j−1

)
dq

28



=

∫ 1

0
F−1(1− q) g(ζ)n (p, q) dq,

where the last equality follows from the binomial theorem.

Proof of Claim A.1. For any j ∈ [n], let bn,j := j ·
(
n
j

)
. Then we can write the expected value of

the jth top ordered statistics as follows:

E[X(j)] =

∫ ∞

0
xf(x)F (x)n−j(1− F (x))j−1 · bn,j dx =

∫ 1

0
F−1(1− u) · (1− u)n−juj−1 · bn,j du

=

∫ 1

0

∫ 1

u
r(v) dv · (1− u)n−juj−1 · bn,j du =

∫ 1

0
Pr[Bin(n, v) ≥ j] · r(v) dv, (23)

where the second equality uses the substitution 1 − F (x) = u, and the third equality comes from

our assumption that F−1 is differentiable and strictly decreasing so that the existence of r(v) is

guaranteed, and the last equality changes the order of integration.

Example A.1. Here, we show that varying the disruption probability within the selection process

can lead to a competitive ratio of 0. Let n and s be large constants, where s ≪ n. Assume n is

divisible by s for simplicity. Assume Xi ∼ Exp(1). Consider the disruption process Pr[Yi = 1] = 1

if i = 1, 1 + s, . . . , 1 + (n/s− 1)s, and 0 otherwise. The optimal clairvoyant algorithm collects top

n/s ordered statistics in expectation, where the exponential distribution’s order statistics roughly

follows harmonic numbers (e.g., see David and Nagaraja (2004)). Thus, v(OPT) ≈
∑n/s

l=1 log
(
n
l

)
≈(

n
s log s+

n
s − 1

)
. On the other hand, the optimal online algorithm’s value is n/s by accepting every

value when Yi = 0. From here, we see that v(ALG)/v(OPT) → 0 as n and s grow large.

B Missing Proofs from Section 4

Lemma B.1. Fix p ∈ (0, 1). Then v∑n
i=2 p·(1−p)i−1

∑i−1
j=1 Pr[Bin(n,v)≥j]+(1−p)n·nv

is a non-decreasing

function in the interval v ∈ [0, q].

Proof of Lemma B.1. It is sufficient to show that the function f(v) = v/
(∑i

j=1 Pr[Bin(n, v) ≥ j]
)

is non-decreasing for fixed i ∈ [n− 1]. Consider g(v) = 1/f(v), and its derivative with respect to v:

g′(v) =
1

v2

 i∑
j=1

(
n∑

k=j

(
n

k

)
kvk(1− v)n−k −

(
n

k

)
(n− k)vk+1(1− v)n−k−1)− Pr[Bin(n, v) ≥ j]


=

1

v2

i∑
j=1

n!

(n− j)!(j − 1)!
vj(1− v)n−j − vn+1

1− v
− Pr[Bin(n, v) ≥ j]

= − ivn+1

v2(1− v)
+

1

v2

i∑
j=1

(j · Pr[Bin(n, v) = j]− Pr[Bin(n, v) ≥ j]).

Observe that ivn+1/
(
v2(1− v)

)
is non-negative, and for each k ∈ [1, i], k · Pr[Bin(n, v) = k] −

29



∑k
j=1 Pr[Bin(n, v) = j] = 0, as Pr[Bin(n, v) ≥ j] =

∑n
k=j Pr[Bin(n, v) = k]. Thus, g′(v) ≤ 0, and

f(v) is non-decreasing in v ∈ [0, q].

Proof of Lemma 4.4.

v(OPT) ≥
n∑

i=2

p · (1− p)i−1
i−1∑
j=1

∫ 1

0
F̂ (u) · (1− u)n−juj−1 · j ·

(
n

j

)
du

=

∫ 1

0

n∑
i=2

p · (1− p)i−1
i−1∑
j=1

a1
n
δ{0}(u) · (1− u)n−juj−1 · j ·

(
n

j

)
du

+

∫ β/n

0

n∑
i=2

p · (1− p)i−1
i−1∑
j=1

a2 · (1− u)n−juj−1 · j ·
(
n

j

)
du

= a1

n∑
i=2

p(1− p)i−1 + a2

n∑
i=2

i−1∑
j=1

p · (1− p)i−1 Pr[Bin(n, β/n) ≥ j]

= a1(1− p)(1− (1− p)n−1) + a2

i−1∑
j=1

Pr[Bin(n, β/n) ≥ j][(1− p)j − (1− p)n].

The second equality recognizes that Pr[Bin(n, β/n) ≥ j] =
∫ β/n
0 (1− u)n−juj−1 · j ·

(
n
j

)
du, and we

recover the lemma by letting n → ∞.

Proof of Lemma 4.5. We derive the performance of ALGq via direct calculation.

v(ALGq) = An(q, p) ·
∫ q
0 F̂ (u) du

q
= An(q, p) ·

∫ q
0 (a1/n)δ{0}(u) + a2I(0,β/n](u) du

q
(per (7))

=
An(q, p)

q
·
(a1
n

+ a2 ·min{q, β/n}
)

= max

{
sup

q∈[0,β/n]

An(q, p)

q
·
(a1
n

+ a2 · q
)
, sup
q∈[β/n,1]

An(q, p)

q
·
(
a1
n

+
a2β

n

)}

=
1− p

p
·max

{
sup

λ∈[0,β]

1

λ

(
1−

(
1− λp

n

)n)
(a1 + a2λ) , sup

λ∈[β,n]

1

λ

(
1−

(
1− λp

n

)n)
(a1 + a2β)

}
,

(24)

where the last equality follows from the change of variable q = λ/n. We denote by r1(λ) the second

term in the maximum argument in (24). We have r′1(λ) =
1
λ2

(
λp
(
1− λp

n

)n−1
+
(
1− λp

n

)n
− 1

)
,

and for λ = 2/p, the derivative of r1 becomes negative; hence, supλ∈[β,n] r1(λ) can be restricted to

[β,max{β, 2/p}]. Next, letting n → ∞ yields

lim
n→∞

v(ALGq) =
1− p

p
·max

{
sup

λ∈[0,β]

1− e−λp

λ
(a1 + a2λ), sup

[β,max{β,2/p}]

1− e−λp

λ
(a1 + a2β)

}
. (25)

We denote by r2(λ) and r3(λ) the first and second terms in the maximum argument in (25),

30



respectively. Note that r′2(λ) = [a1(e
−λp − 1) + pλe−λp(a1 + a2λ)]/λ

2. Thus, r2
′(λ∗) = 0 implies

that e−λ∗p
(
a1 + a1pλ

∗ + a2p(λ
∗)2
)
= a1; hence, supλ∈[0,β] r2(λ) = max{r2(λ∗), r2(β), limλ→0 r2(λ)}

where 0 < λ∗ < β, if it exists. Moreover, r3(λ) is a decreasing function in λ, thus the supremum is

attained at λ = β. We combine both cases to conclude the proof.

C Missing Proofs from Section 5

Proof of Proposition 5.3. By the second characterization of vε(OPT) in (2), we have

vε(OPT) =

∫ 1

0
F̃ (u)g(0)n (p, u) du

=

∫ 1

0

(
θ∗

(1− p)n
· δ{0}(u)−

p

1− p

∫ 1−ε

y−1(e−pnu)

1

y′(s)
dsI(0,1)(u)

)
(1− p) · n(1− pu)n−1 du

= θ∗ −
∫ 1

0

∫ 1−ε

y−1(e−pnu)

1

y′(s)
ds(1− pu)n−1pn du

= θ∗ −
∫ 1

e−np

∫ 1−ε

y−1(v)

1

y′(s)
ds

(
1 +

log(v)

n

)n−1 dv

v
(per v = e−npu)

= θ∗ −
∫ 1−ε

0

∫ 1

max{y(s),e−np}

(
1 +

log(v)

n

)n−1 dv

v

1

y′(s)
ds (changing order of integration)

= θ∗ −
∫ 1−ε

0

1

y′(s)

(
1−

(
1 +

log(y(s))

n

)n)
ds. (per y(s) > e−np when s ∈ (0, 1− ε))

Proof of Lemma 5.4. We first show that (19) satisfies the Bellman equation (18).∫ µ

0
h(u) du− pµd(x)

=

∫ − log(y(x))/p

0

(
θ∗ · δ{0}(u)− p

∫ 1

y−1(e−pu)

1

y′(s)
dsI(0,1)(u)

)
du− p · log(y(x))

p
·
∫ 1

x

1

y′(s)
ds

= θ∗ − p

∫ 1

0

∫ min{− log(y(x))/p,− log(y(s))/p}

0
du

1

y′(s)
ds− log(y(x))

∫ 1

x

1

y′(s)
ds

= θ∗ +

∫ 1

0

max{log(y(x)), log(y(s))}
y′(s)

ds−
∫ 1

x

log(y(x))

y′(s)
ds

= θ∗ +

∫ x

0

log(y(s))

y′(s)
ds+

∫ 1

x

log(y(x))

y′(s)
ds−

∫ 1

x

log(y(x))

y′(s)
ds (monotonicity of y(x))

= θ∗ +

∫ x

0

y′′(s)

(y′(s))2
ds (per y′′(x) = y′(x) log(y(x)))

= θ∗ − 1

y′(x)
+

1

y′(0)
= − 1

y′(x)
= −d′(x).

Next, we show that µ is indeed the unique maximizer. We proceed in two steps: (i) the derivative

with respect to µ is zero. (ii) the derivative is positive when µ = 0, and the derivative is negative

as µ → ∞. By Leibniz integral rule, we have d
dµ

{∫ µ
0 h(u) du− pµd(x)

}
= h(µ)− p · d(x).

31



To verify (i), note that

h(µ)− p · d(x) = θ∗ · δ{0}(−
log(y(x))

p
)− p

∫ 1

x

1

y′(s)
dsI(0,1)(µ)− p ·

∫ 1

x
− 1

y′(s)
ds = 0.

To verify (ii), note that limµ→∞ h(µ)− p · d(x) = −p · d(x) < 0 and

h(0)− p · d(x) = θ∗ − p

∫ 1

0

1

y′(s)
ds− p ·

∫ 1

x
− 1

y′(s)
ds = θ∗ − p ·

∫ x

0

1

y′(s)
ds > 0.

Proof of Claim 5.6. Let di,σ := d((1− σ)i/n)) and yi,σ := y((1− σ)i/n)). Then, we have

(1− p)

∫ q

0
F̃ (u) du+ (1− pq)(1 + ησ)di+1,σ

≤ 1

n

∫ µ

0
h(u) du+

(
1− pµ

n

)
(1 + ησ)

(
di,σ +

1− σ

n
d′i,σ

)
(Rewrite q = µ

n & concavity of di,σ)

= (1 + ησ)di,σ +
1

n

(∫ µ

0
h(u) du− (1 + ησ)pµdi,σ

)
+

1

n
(1 + ησ)

(
d′i,σ(1− σ)− pµ

n
d′i,σ(1− σ)

)
≤ D̃i −

d′i,σ
n

+
ησ log(yi,σ)

n
di,σ +

d′i,σ
n

+
ησd

′
i,σ

n
−

σd′i,σ
n

−
σησd

′
i,σ

n
+

log(yi,σ)

n2
d′i,σ(1− σ)(1 + ησ)

= D̃i +
ησ log(yi,σ)

n
di,σ +

ησd
′
i,σ

n
−

σd′i,σ
n

−
σησd

′
i,σ

n
+

log(yi,σ)

n2
d′i,σ(1− σ)(1 + ησ)

Note that ησ log(yi,σ)di,σ < 0, and since d′i,σ < 0, it is sufficient to show that ησ − σ − σησ +
log(yi,σ)

n (1− σ)(1 + ησ) ≥ 0, which is guaranteed by (20).

D Missing Proofs from Section 7

Proof of Lemma 7.6. Recall that µl = E[max{X1, . . . , Xl}|X1 ≥ τ, . . . , Xl ≥ τ ]. We first charac-

terize µl via a positive function r(v), where
∫ 1
u r(v)dv = F−1(1− u). Let Fτ (x) := Pr[Xl ≤ x|Xl ≥

τ ] = (F (x)− F (τ))/(1− F (τ)). We have

µl =

∫ ∞

τ
x l Fτ (x)

l−1dFτ (x) =
1

(1− F (τ))l

∫ ∞

τ
x l
(
F (x)− F (τ)

)l−1
dF (x)

=
1

ql

∫ q

0
F−1(1− w)l(q − w)l−1dw =

l

ql

∫ q

0

∫ 1

w
r(v)dv(q − w)l−1dw

=
l

ql

∫ 1

0

∫ min{q,v}

0
(q − w)l−1dwr(v)dv =

1

ql

∫ 1

0

(
ql − (q −min{q, v})l

)
r(v)dv.

We complete the proof by employing the same non-adaptive algorithm value formulation as estab-

lished in Lemma 4.2.

Define

R(v) :=
(v/q)

p+ (1− p) (v/q)

1−
(
1− qp− (1− p) v

)n
(1− (1− v)n)

.

32



Lemma D.1. R(v) is non-decreasing in v ≤ q.

Proof of Lemma D.1. We begin by differentiating R(v) explicitly for n ≤ 4 and verify, by direct

computation, that R′(v) ≥ 0. We then turn to the case n ≥ 5. For n ≥ 5, it is convenient to recast

R(v) using the following shorthand notation:

S(x) :=
n−1∑
j=0

(1− x)j =
1− (1− x)n

x
, s(v) := qp+ (1− p) v, R(v) =

S
(
s(v)

)
S(v)

.

We take the derivative of logR. Then we have

d

dv
logR(v) =

d

dv

[
logS

(
s(v)

)
− logS(v)

]
= (1− p)

S′(s(v))
S
(
s(v)

) − S′(v)

S(v)
.

Next, we show that logS is convex for n ≥ 5. Setting u = 1− x yields

S′(x) = −
n−1∑
j=1

j u j−1, S′′(x) =
n−1∑
j=2

j(j − 1)u j−2.

Hence,

(logS)′′(x) =
S′′(x)S(x)−

(
S′(x)

)2(
S(x)

)2 =

∑
0≤i<j≤n−1(i− j)2 u i+j−2 − 1

2

∑n−1
i,j=0(i+ j)ui+j−2(

S(x)
)2 .

When n ≥ 5, (logS)′′(x) ≥ 0, thus (logS)′(x) = S′(x)/S(x) is non-decreasing. Since v ≤ q,

s(v) = qp+ (1− p) v ≥ v. Because (logS)′ is increasing and 0 ≤ 1− p ≤ 1,

(1− p) (logS)′
(
s(v)

)
− (logS)′(v) ≥ (1− p) (logS)′(v)− (logS)′(v) = −p (logS)′(v) ≥ 0,

where the last inequality uses (logS)′(v) = S′(v)/S(v) ≤ 0. Therefore,

d

dv
logR(v) = (1− p)

S′(s(v))
S
(
s(v)

) − S′(v)

S(v)
≥ 0,

and hence, R′(v) ≥ 0 on (0, q].

D.1 Upper Bound

In this subsection, we explain that our analysis is tight by illustrating an instance as the proof for

the upper bound. We use the same distribution from (7), that is,

F̂ (u) :=
a1
n
δ{0}(u) + a2I(0,β/n](u). (26)

33



We can separately characterize the value of the optimal algorithm and the value of the single

threshold algorithm, when n → ∞.

Lemma D.2. When n → ∞, vmax(OPT) = (1− p) ·
[
a1 + a2

(
1− e−β

)]
.

Proof of Lemma D.2. We use the expression from Lemma 7.5,

v(OPT) = (1− p)E[X(1)] = (1− p)

∫ 1

0
F−1(1− u) (1− u)n−1ndu,

= (1− p)n

∫ 1

0

a1
n
δ{0}(u)(1− u)n−1 du + (1− p)n

∫ β/n

0
a2(1− u)n−1du.

= (1− p)a1 + (1− p)n · a2 ·
1− (1− β/n)n

n
= (1− p) ·

[
a1 + a2

(
1− (1− β/n)n

)]
We recover the claim by letting n → ∞.

Lemma D.3. As n grows large, the expected value of ALGt/n converges to

lim
n→∞

vmax(ALG
t/n) = sup

t∈[0,β]
(1− p)

[
a2(1− e−t) +

a1
p

1− e−pt

t

]
Proof of Lemma D.3. Define m = min{q, β/n}, we can find the following expressions for µk where

µ0 = 0, and

µk =
1

qk

∫ q

0
F−1(1− w)k(q − w)k−1dw =

1

qk

[
a1
n

k q k−1 + a2

∫ m

0
k (q − w)k−1 dw

]
=

1

qk

[a1
n

k q k−1 + a2
(
qk − (q −m)k

)]
=

a1
n

k

q
+ a2

[
1−

(
1− m

q

)k]
.

Thus, using the expression from Lemma 7.6 and denoting ban,q := Pr[Bin(n, q) = a], ck := 1−
(
1−

β
nq

)k
,

sup
q∈[0,1]

vmax(ALG
q) = max

{
sup

q∈[0,β/n]

n∑
a=1

ban,q

(
a−1∑
k=1

p(1− p)k(
a1k

nq
+ a2) + (1− p)a(

a1a

nq
+ a2)

)
,

sup
q∈[β/n,1]

n∑
a=1

ban,q

(
a−1∑
k=1

p(1− p)k(
a1k

nq
+ a2ck) + (1− p)a(

a1a

nq
+ a2ca)

)}

= max

{
sup

q∈[0,β/n]
a2(1− p)

(
1− (1− q)n

)
+

a1
n

1− p

p

1− (1− qp)n

q
, sup
q∈[β/n,1]

a1
n

1− p

p

1− (1− qp)n

q

+ a2

[
1− p

p+ (1− p) β
nq

(
1−

(
1− qp− (1− p)βn

)n)− (1− qp− (1− p)βn
)n]}

= max

{
sup

t∈[0,β]
(1− p)

[
a2

(
1−

(
1− t

n

)n)
+

a1
p

1−
(
1− pt

n

)n
t

]
, sup
t∈[β,n]

a1(1− p)

p

1−
(
1− pt

n

)n
t

34



+ a2

[
1− p

p+ (1− p)βt

(
1−

(
1− pt+ (1− p)β

n

)n)
−
(
1− pt+ (1− p)β

n

)n
]}

, (27)

where the last equality uses the change of variable q = t/n. We denote by r1(t) the second term

in the maximum argument in (27). Similar to the analysis in Lemma 4.5, we can prove that both

terms in r1(t) is decreasing when t > 2/p (see Claim D.4 for details). Hence, supt∈[β,n] r1(t) can be

restricted to [β,max{β, 2/p}]. Next, letting n → ∞, we can extend (27):

sup
q∈[0,1]

vmax(ALG
q) = max

{
sup

t∈[0,β]
(1− p)

[
a2(1− e−t) +

a1
p

1− e−pt

t

]
,

sup
t∈[β,max{β,2/p}]

a1(1− p)

p

1− e−pt

t
+ a2

[
1− p

p+ (1− p)βt

(
1− e−(pt+(1−p)β)

)
− e−(pt+(1−p)β)

]
.

(28)

We denote by r2(t) the second term in the maximum argument in (28). r2(t) is a decreasing function

in t, thus the supremum is attained at t = β. From here, we conclude the proof.

Claim D.4. r1(t) is decreasing in t for t > 2/p.

Proof of Claim D.4. By Lemma 4.5, the derivative of the first term in r1(t) is negative for t > 2/p.

It remains to handle the second term. Set y(t) = pt + (1 − p)β, so that the second term can be

rewritten as

a2
(1− p)β

y(t)

(
1−

(
1− y(t)

n

)n)
.

Observe that the preceding expression has the same structure as the first term; hence its derivative

is negative under the same condition, namely y(t) > 2. Since t > 2/p implies y(t) = pt+(1−p)β ≥
pt > 2, this condition is satisfied.

Finally, we use the preceding results to establish that the competitive ratio admits an upper

bound of 1− e−λ(p). Specifically, we have

inf
F∈F ,n≥1

sup
q∈[0,1]

vmax(ALG
q)

vmax(OPT)
≤ inf

n≥1
min

a1,a2≥0,a1+a2=1
sup

q∈[0,1]

vmax(ALG
q)

vmax(OPT)

≤ lim
β→∞

lim
n→∞

min
a1,a2≥0,a1+a2=1

sup
t≥0

(1− p)
[
a2(1− e−t) + a1

p
1−e−pt

t

]
1− p

= max
t≥0

min
a1,a2≥0,a1+a2=1

{
a2(1− e−t) + a1

(
1− e−pt

pt

)}
= sup

t≥0
min

{
1− e−t,

1− e−pt

pt
.

}
The second inequality follows directly from Lemmas D.2 and D.3. The first equality uses the quasi-

concavity of the function f(t) = a2(1−e−t)+ a1
p

1−e−pt

t which allows the interchange of the min and

max operators under Sion’s minimax theorem (Sion, 1958). The proof is detailed in Claim D.5. The

35



final equality then follows by noting that, for any fixed t, the minimum over the convex combination

parameters a1, a2 occurs at one of the extreme points of the simplex.

Claim D.5. For any a1, a2 ≥ 0, a1+a2 = 1, 0 < p < 1, and t > 0, f(t) is a quasi-concave function.

Proof of Claim D.5. A direct differentiation gives

f ′(t) = a2e
−t +

a1
p t2

(
e−pt(1 + pt)− 1

)
.

Multiplying by the positive factor p t2 and rearranging,

f ′(t) = 0 ⇐⇒ L(t) = R(t), L(t) := a1

(
1− e−pt(1 + pt)

)
, R(t) := p a2 t

2e−t.

L is strictly increasing on (0,∞):

L′(t) = a1p
2te−pt > 0, lim

t↓0
L(t) = 0, lim

t→∞
L(t) = a1.

R is unimodal with a unique maximum at t = 2:

R′(t) = pa2e
−t(2t− t2), R(0) = 0, lim

t→∞
R(t) = 0.

Since L is strictly increasing, and R increases on (0, 2), then decreases on (2,∞), the equation

L(t) = R(t) has at most one solution t∗ > 0. Indeed, if 0 < t1 < t2 with L(ti) = R(ti), then,

because L is strictly increasing, R− L > 0 on (t1, t2). But R− L has at most one local maximum

(as R has one and L is monotone), so starting from R(0) − L(0) = 0, it cannot become positive

and return to 0 twice without creating two distinct extrema. Hence, f ′ has at most one zero on

(0,∞).

E Missing Details from Section 8

In this section, we study the non-i.i.d. variant of OS-UD, where the values Xi’s are drawn from

non-negative, independent, but potentially non-identical distributions Fi’s, respectively. For this

variant, we first establish a lower bound for the competitive ratio against the benchmark, which

can rearrange the arrival sequence after observing all Xi’s. We then conclude by providing a tight

upper bound for the competitive ratio.

Theorem E.1. In the non-i.i.d. variant of OS-UD with ζ ∈ [0, 1], the optimal online algorithm

achieves at least a 1/2-competitive ratio with respect to the offline benchmark.

Proof of Theorem E.1. For each i ∈ [n], let zi denote the probability that OPT selects item i, and

set B = 1− (1− ζ)p. By stochastic dominance (conditioning on the top zi-quantile maximizes the

36



conditional mean), there exists a threshold τi with zi = Pr[Xi ≥ τi] such that

v(OPT) =
n∑

i=1

B · E[Xi | OPT selects i] · zi ≤
n∑

i=1

B · E[Xi | Xi ≥ τi] · zi. (29)

Consider the following online algorithm ALG. At time i, ALG independently skips the current item

with probability εi ∈ [0, 1] (to be determined below); otherwise, if Xi ≥ τi, ALG accepts the current

item. Let Ri := Pr[ALG reaches item i], where R1 = 1. Then we can write the value of ALG as

v(ALG) =
n∑

i=1

Ri · (1− εi) ·B · E[Xi | Xi ≥ τi] · zi. (30)

Since both v(ALG) and v(OPT) are comparable term by term, it is sufficient to prove that for all

i ∈ [n], we have Ri(1 − ϵi) ≥ 1/2. To see this, we first characterize a recurrence relation for Ri.

From time i to i+1, ALG fails to advance if and only if ALG does not skip (with probability (1− ϵi)),

Xi ≥ τi, and disruption happens. Therefore,

Ri+1 = Ri

(
1− (1− εi) zi p

)
, i = 1, . . . , n− 1. (31)

Moreover, to guarantee that Ri(1 − ϵi) ≥ 1/2, we simply set 1 − ϵi = 1/(2Ri), and plugging into

the recurrence (31), we have the following updated recurrence for Ri:

Ri+1 = Ri

(
1− zip

2Ri

)
= Ri −

zip

2
. (32)

Iterating (32) yields the closed forms for Ri and ϵi for all i ∈ [n]:

Ri = 1− p

2

i−1∑
k=1

zk, εi = 1− 1

2− p
∑i−1

k=1 zk
. (33)

To ensure Ri ≥ 1/2 so that εi is a valid probability, it suffices to show
∑i−1

k=1 zk ≤ 1/p. Bounding

the expected number of OPT’s selections before time i gives

i−1∑
k=1

zk ≤
i−1∑
k=1

(1− p)k−1 =
1− (1− p)i−1

p
≤ 1

p
.

Finally, combining (29) and (30) with Ri(1− εi) =
1
2 yields

v(ALG) =
1

2

n∑
i=1

B · E[Xi | Xi ≥ τi] · zi ≥
1

2
v(OPT).

Since the optimal online policy attains a value of at least v(ALG), the result follows.

37



Upper Bound. We now present an instance that provides a tight upper bound for the competitive

ratio under the non-i.i.d. variant of OS-UD. Consider n items arriving in order. The last item

follows the distribution Xn = 1/ε with probability ε and Xn = 0 otherwise, whereas all preceding

items share a deterministic value: X1 = · · · = Xn−1 = (p− ε), where ε > 0 is sufficiently small. At

the penultimate encounter (at time n−1), the optimal online algorithm either skips item n−1 and

advances to accept the last item (with expected value gain of B), or accepts item n−1 and possibly

advances to accept the last item (with expected value gain of B
[
(p − ε) + (1 − p)

]
= B(1 − ε)).

Therefore, for any ε > 0, it is optimal to skip in the penultimate encounter. By induction, it

follows that the optimal online algorithm skips the first n − 1 items and accepts the last item.

Thus, v(ALG) = B. On the other hand, the offline benchmark goes backwards in order, and

retrieves:

v(OPT) = ε

(
B

1

ε
+B(p− ε)

n−1∑
m=1

(1− p)m

)
+ (1− ε)B(p− ε)

n−2∑
m=0

(1− p)m

= B

[
1 +

(p− ε)(1− εp)

p

(
1− (1− p)n−1

)]
.

Letting n → ∞ and then ε → 0 yields the asymptotic competitive ratio of

lim
n→∞
ε→0

v(ALG)

v(OPT)
=

1

2
.

38


	Introduction
	Problem Formulation
	Our Technical Contributions

	Related Work
	Preliminaries
	The Class of Non-Adaptive Algorithms
	Quantile-Based Non-Adaptive Algorithm
	Upper Bound on Competitive Ratio

	The Class of Adaptive Algorithms
	Quantile-Based Threshold Algorithm
	Upper Bound

	Partial Recovery
	Non-adaptive Algorithm
	Adaptive Algorithm

	Maximizing the Largest Value Until Disruption
	Proof of Theorem 7.1

	Final Remarks
	Missing Proofs from Section 3
	Missing Proofs from Section 4
	Missing Proofs from Section 5
	Missing Proofs from Section 7
	Upper Bound

	Missing Details from Section 8

