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In economies without monetary transfers, token systems serve as an alternative to sustain cooperation,

alleviate free riding, and increase efficiency. This paper studies whether a token-based economy can be

effective in marketplaces with thin exogenous supply. We consider a marketplace in which at each time

period one agent requests a service, one agent provides the service, and one token (artificial currency) is

used to pay for service provision. The number of tokens each agent has represents the difference between

the amount of service provisions and service requests by the agent. We are interested in the behavior of this

economy when very few agents are available to provide the requested service. Since balancing the number

of tokens across agents is key to sustain cooperation, the agent with the minimum amount of tokens is

selected to provide service among the available agents. When exactly one random agent is available to provide

service, we show that the token distribution is unstable. However, already when just two random agents

are available to provide service, the token distribution is stable, in the sense that agents’ token balance is

unlikely to deviate much from their initial endowment, and agents return to their initial endowment in finite

expected time. Our results mirror the power of two choices paradigm in load balancing problems. Supported

by numerical simulations using kidney exchange data, our findings suggest that token systems may generate

efficient outcomes in kidney exchange marketplaces by sustaining cooperation between hospitals.
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1. Introduction

Token systems have been introduced as a market solution to economies in which monetary transfers

are undesirable or repugnant. Examples include trading favors in babysitting cooperatives (Sweeney

and Sweeney 1977), exchanging resources in peer-to-peer systems (Vishnumurthy et al. 2003), and

distributing food to food banks (Prendergast 2016). The use of such artificial currency is intended

to sustain cooperation, alleviate free riding, and increase efficiency. The incentive for agents to

provide service (or resources) is to earn tokens and the ability to spend them in future exchanges.

This ability relies on the liquidity of agents’ availability to provide service upon request. This paper
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studies the behavior of token systems in thin marketplaces, where demand exceeds supply, and

agents’ availability for transactions is sparse.

One motivation for this study arises from kidney exchange. Many patients in need for a kidney

transplant have a willing but incompatible living donor, which has led to the emergence of platforms

that arrange swaps in order to find a compatible donor (Roth et al. 2007). Efficiency of these

platforms relies on the thickness of the pool, as a large fraction of these pools include pairs that

are hard-to-match (Ashlagi et al. 2019). However, free riding is a common behavior; in the US,

hospitals often submit to national platforms the pairs they cannot match internally (Agarwal et al.

2019),1 and similar behavior was observed by countries in international collaborations.2 To alleviate

free riding, token systems based on hospitals’ contribution to the pool have been adopted in an

ad-hoc manner, most notably by the National Kidney Registry in the US.3 A major concern is

whether such systems can reward back contributing hospitals successfully, given that liquidity is

low due to the sparsity of the kidney exchange pool. In this work, we ask if a token system can be

effective in such sparse marketplaces and sustain cooperation between agents.

To address this question, we study a stylized model in which agents request and provide service

over time, and tokens are used as artificial currency to pay for service provision. We consider an

infinite horizon model with finitely many agents, where each agent has initially 0 tokens, and agents

are allowed to have negative number of tokens. At each time period, one randomly chosen agent

requests a service, and a random subset of agents of size d become available to provide the service.

One of these agents is selected to provide the requested service, and the service requester pays

one token to the service provider. The number of tokens each agent has represents the difference

between the amount of service provisions and service requests by the agent. As balancing the

number of tokens across agents is key to sustain cooperation, the agent with the fewest tokens

among the available agents is selected to provide the service.

We are interested in the case in which d is a small constant; in the context of kidney exchange,

this aims to capture few match opportunities for a given patient-donor pair. Our model is based

on Johnson et al. (2014) and Kash et al. (2015). Their models, however, assume that at each time

period, a constant fraction of agents are available to provide service, i.e., the service availability is

not minimal. Intuitively, the larger the number of agents who are available to provide service, the

easier it is to balance the amount of service provisions among agents.

1 Agarwal et al. (2019) documents that more than half of the exchanges in the US being arranged within hospitals.

2 See Ashlagi and Roth (2021) for discussion about collaborations and mergers.

3 Numerous platforms count the number of altruistic donors (who have no intended donor) and end altruistic donor
chains with patients in these hospitals. Some platforms attempt to equalize the number of donors and patients from
each “player” matched in each exchange (Biró et al. 2019, Mincu et al. 2020).
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Cooperation is important for token systems. For example, the Capitol Hill Babysitting Co-op,

which aimed to exchange babysitting hours between families has crashed, since tokens’ values

depreciated (Sweeney and Sweeney 1977). So in a healthy market, agents should not accumulate

too many tokens (which can lead to unraveling), or accumulate a large debt (which leads to free

riding).

Motivated by these potential frictions, we analyze the token distribution in our model, and

identify conditions under which the token system is stable, in the sense that the Markov chain

describing the process admits a stationary probability distribution (the formal definition is given

in §2). Informally, stability is described by two desired conditions. The first condition is a uniform

boundedness condition; the number of tokens each agent has does not deviate much from its initial

state, with high probability. The second condition is a fairness condition; the number of tokens each

agent has oscillates in such a way that agents return to their initial endowment in finite expected

time. In other words, the first condition ensures that agents will not accumulate or lose too many

tokens. Thus, agents will not lose their incentive to cooperate. The second condition implies that

the market clears in finite expected time, which alleviates free riding and balances the number of

requests and provisions for each agent continuously over time. In the context of the classical model

of mean-variance preferences (e.g., see Markowitz (1952), Tobin (1958)), our stability conditions

offer an attractive solution for strategic agents, where stable systems reduce agents’ risk (for further

discussion on strategic considerations, see §5).

Overview of results. In the baseline case (d= 1), only one agent is available to provide service.

Thus at each time period, service requester and provider are chosen independently to exchange

service for tokens. In this case the system is unstable, since the number of tokens each agent has

behaves like a divergent or null recurrent random walk.

When d > 1, the service provider who has the minimal number of tokens is chosen among all

available agents. In our main finding, we show that already when d= 2, the system is stable. We

show that the long-run probability of agents having more than M tokens (or less than −M tokens)

is at most O(1/M). We further show, using Lyapunov arguments, that this probability is bounded

by O(aM) for any a> 2/3; here O(·) includes a constant that may depend on n. We further study

stability in a large market, and show that as n grows large, this probability is bounded by (1/2)M .

The large market analysis offers intuitive insights into the token dynamics.

We also describe how the stylized model can be applied for kidney exchange in §6, and we further

perform numerical experiments to simulate the token distribution of participating hospitals using

data from the National Kidney Registry (NKR) platform. The simulations reveal and validate that

easy-to-match pairs have, on average, more than one, but very few compatible hard-to-match pairs.
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Despite this sparsity, hospitals’ tokens do not deviate much from the initial state, which is aligned

with our predictions. It is worth noting that hospitals in our data vary significantly with respect

to size and distribution of patient-donor pair characteristics.

Techniques. This paper is inspired and borrows from the literature on the power of two choices

(see, e.g., Mitzenmacher 1996, Vvedenskaya et al. 1996, Azar et al. 1999). The main finding of this

literature is that in load balancing problems, minimal choice can significantly reduce congestion

both in dynamic and static settings. In our model, it is simple to analyze the system directly using

a birth-death process when n= 2. For n ≥ 3, the system does not seem amenable to a complete

analytical solution, but softer techniques allow us to show that it is stable.

For finite n, we use the Lyapunov method to study a suitable exponential Lyapunov function’s

negative drift to establish tail bounds on the number of tokens agents have in the long-run. We

further analyze the token distribution, and we explicitly characterize the tail bound as n grows large

using Kurtz’s theorem on density dependent Markov chains (see Kurtz 1981); the same techniques

are used in Mitzenmacher (1996) and Vvedenskaya et al. (1996) to analyze various load balancing

problems including the supermarket model. While there are subtle differences between our model

and the load balancing problems in the literature (as we explain below), our work can be viewed

as another application of the power of two choices paradigm. Kurtz’s theorem provides conditions

under which a stochastic process can be approximated by a deterministic process in the limit. This

allows us to show that the token distribution is balanced, and the number of tokens each agent has

is unlikely to be far from its initial state.

Related literature. Numerous papers study exchange economies using tokens or models for

exchanging favors (Möbius 2001, Friedman et al. 2006, Hauser and Hopenhayn 2008, Abdulka-

diroglu and Bagwell 2012, Kash et al. 2012, 2015, Johnson et al. 2014). This literature is concerned

with whether cooperation can be sustained in equilibrium, and whether efficiency can be achieved.

The main finding of this literature is that if agents are sufficiently patient, token mechanisms may

lead to efficient outcomes. Closely related are Johnson et al. (2014), Kash et al. (2015) and Bo et al.

(2018). These papers study token systems as a strategic game in an infinite horizon with discount-

ing, but with similar dynamics. The key difference is that these papers assume that either all or a

constant fraction of agents are available to provide service at each time period. Kash et al. (2015)

study a model in which the service provider is chosen independently from the token distribution,

and show the existence of an equilibrium, in which agents provide service when their tokens is below

some threshold. Johnson et al. (2014) study the same model and show that under the minimum

token selection rule, agents always provide service in equilibrium when punishments are feasible.
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Bo et al. (2018) extend their findings without using punishments. Our paper contributes to this

literature, by studying whether stability can be achieved with low liquidity (i.e., low availability of

service).

Also related is the literature on the power of two choices in load balancing problems (Azar et al.

1994, 1999, Mitzenmacher 1996, Vvedenskaya et al. 1996). In this classic problem, n balls are

sequentially thrown into n bins. The key finding is that if two bins are selected randomly and the

ball is thrown to the bin with the lower load, then the fullest bin has exponentially fewer balls than

if only one bin is chosen randomly in the throwing process. Mitzenmacher (1996) and Vvedenskaya

et al. (1996) find a similar result for the supermarket model, which is a dynamic queueing system,

where the longest queue is much longer if customers choose randomly among all queues rather than

choosing intelligently between two random queues. The state space of the process we are interested

in can be obtained by truncating the state space of the supermarket model. We describe in detail

the difference between our model and the supermarket model in Remark 1 in §4.3. In short, using a

queueing language, Mitzenmacher (1996) focuses on the effect of the parameter d on the expected

time customers spend in the system and the length of the longest queue in the long-run. We are

interested, however, in the overall distribution of all queue-lengths, and provide a more detailed

characterization for the system, which is needed for our analysis. In fact, Azar et al. (1999) also

study an infinite horizon process in which at each time period, one random ball is removed from

the bins, and one ball arrives which is assigned to one of the two random bins intelligently. Our

stochastic process has subtle differences (using this language, instead of removing one random ball,

we first pick a random bin, and then remove a ball), making the machinery of Azar et al. (1999)

inapplicable.

Notation. We use Z≥0 and Z+ to denote the set of non-negative integers and the set of strictly

positive integers, respectively. We use R≥0 and R+ to denote the set of non-negative real numbers

and the set of strictly positive real numbers, respectively. We write Eπ[·] and Pπ(·) to write the

expectation and the probability with respect to a given distribution π, respectively.

2. Model

There is a finite set of agents A= {1,2, . . . , n}, n≥ 2. The time t ∈ Z≥0 is discrete. The number

of tokens agent i ∈A has at time t is denoted by sti ∈ Z. We assume that s0i = 0 for all i ∈A. Let

st ∈Zn track the number of tokens agents have at time t.

Let P = (pi)i∈A,Q= (qi)i∈A be full-support probability measures over the set of agents. At each

time period, nature picks one agent to become a service requester according to P . Let d be a positive

integer, which we call service availability density. At each time period, nature picks available service
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providers by selecting d agents according to Q independently and with replacement. Thus, at most

d agents are available to provide service at each time period. We say that agents are symmetric if

pi = qi =
1
n
for all i∈A.

We refer the tuple (n,P,Q,d) as the token system. We will analyze the behavior of the token

system under a natural matching policy called the minimum token selection rule (see, e.g., Johnson

et al. 2014). This policy, at each time period, selects the available provider with the lowest number

of tokens as the service provider (ties are broken by choosing uniformly at random). At each time

t, if agent i is the service requester and agent j is the service provider, i pays one token to j.

Note that an agent can provide service to herself.4 In this case, st+1 = st. Otherwise, st+1
i = sti − 1,

st+1
j = stj + 1, and st+1

k = stk for all k ∈ A\{i, j}. In either case, we have
∑

i∈A sti = 0 for all t≥ 0.

The case d= 1 is the degenerate case, where the system simply selects one service requester and

one service provider independently at random.

Stability. Under a token system (n,P,Q,d), the state of amount of tokens st evolves according

to a Markov chain defined on the state space
{
s∈Zn :

∑
i∈A si = 0

}
. Our assumptions that P

and Q are full-support probability measures over A ensure that this Markov chain is irreducible.

Furthermore, since there is a positive probability that the service requester is the service provider

herself at each time period, the Markov chain is aperiodic.

We say that a token system (n,P,Q,d) is stable if this Markov chain has a stationary probability

distribution. The reason we associate the existence of a stationary distribution with stability is the

fact that it is equivalent to each of the following conditions:

• (C1) There is a uniformly small probability that the number of tokens owned or owed by any

agent is large. Formally, there is a function f : Z≥0 → [0,1] such that limM→∞ f(M) = 0, and for

all times t large enough and all agents i∈A it holds that P(|sti|>M)< f(M).

• (C2) The expected time for the token system to clear is finite. Formally, let T0 be the first

time the system returns to 0, i.e., T0 =min{t > 0 : st = 0}. Then E(T0) is finite. Note that by the

Markov property, this is also the expected time to return to 0 after a later visit to 0.

While we do not explicitly incorporate strategic considerations in our model, we view stability

as a necessary condition to sustain cooperation in an appropriately defined strategic game.5 Since

the chain is irreducible and aperiodic, stability implies that the stationary distribution is unique,

and that over time the distribution of st will converge to it. Conversely, if there is no stationary

4 This technical assumption is useful for the proofs. Moreover, it is motivated by the kidney exchange setting, where
patient-donor pairs from the same hospital can be matched internally in a centralized setting when hospitals merge
their patient-donor pools. Our results hold with minor modifications if an agent cannot serve herself.

5 For example, in order to prove the existence of an equilibrium, where all agents play a threshold strategy, Kash
et al. (2015) first determine the token distribution of agents in the long-run.
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distribution, the distribution of st will become more and more “spread out” as t increases, with

some agents either owning or owing a large number of tokens. We thus interpret stability as a

necessary condition for the prevention of unraveling and free riding in a token system. In §5, we

offer a microeconomic justification for stability via mean-variance preferences, which is a simple

model of risk aversion used in economics.

The key novel feature of our model is that the service availability density d is small, rather than

being a constant fraction of n. The larger the service availability density d is, the easier it is to

achieve stability, as weakly more agents can provide service at any time period, which provides

more flexibility to balance service provisions among agents. Therefore unless stated otherwise, we

focus on the case when the service availability is minimal, i.e., d= 2.

2.1. The case d= 1

Note that when d= 1, sti is a lazy random walk in one dimension for all i∈A, and so by standard

arguments the token system is not stable. Moreover, st is a random walk on Zn−1 (n−1 dimensions),

and hence, the Markov chain will not be recurrent by Pólya’s Recurrence Theorem for all n≥ 4,

so that the market will eventually stop clearing at all.

An immediate corollary is that the token system is also not stable under the random tie-breaking

selection rule, where the rule selects the service provider, even if all providers are available (d= n),

uniformly at random (see Corollary 1 and all missing details in Appendix 8.1).

3. Two agents

In this section, we analyze the token distribution when there are only 2 agents (n= 2). Although

understanding the token distribution for this case is simple, the analysis will provide insights

regarding the token distribution for the general case. Informally, the best concentration around the

initial point is achieved when n= 2; as the number of agents increases, the “distance” of the token

distribution from the initial point increases as well.

Proposition 1. For d ≥ 2, the token system with 2 agents is stable if and only if qd1 < p1,

qd2 < p2. In this case, let π be the the steady-state distribution of the Markov chain (st : t≥ 0). Then

for all M ∈Z+, we have

Pπ(|sti|>M) =

(
p2q1

p1 − qd1

(
p2q

d
1

p1(1− qd1)

)M

+
p1q2

p2 − qd2

(
p1q

d
2

p2(1− qd2)

)M)
(
1+

p2q1
p1 − qd1

+
p1q2

p2 − qd2

) ,

for i= 1,2. Moreover, the expected time between two successive occurrences of the initial state (0,0)

is given by 1+
p2q1

p1 − qd1
+

p1q2
p2 − qd2

.
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The proof is straightforward and given in Appendix 8.2.6 One implication of Proposition 1 is that

the probability of owning or owing a large number of tokens decays exponentially, i.e., f(M) =

O(aM), where the constant a∈ (0,1) can be found following Remark 4 in Appendix 8.2.

Proposition 1 identifies the level of asymmetry that can be tolerated between service request

and service provision (within and across agents) rates. Moving forward, we focus on the symmetric

case. Note that for symmetric agents and d≥ 2, Proposition 1 implies that the system is stable.

When furthermore d= 2, we get that

Pπ(|sti|>M) =
2

3

(
1

3

)M

,

and that E(T0) = 3. In the general case, we will argue that a= 1/3 is the best rate one can hope

for.

4. The general case

We analyze here the symmetric case with any number of agents. The results for the general case

can be summarized as follows:

1. In Section 4.1, we show that stability holds for all n ≥ 2 and d ≥ 2. We further show that

(C1) holds with f(M) = 5/M for all n≥ 2 (Theorem 1). In particular, the probability that a given

agent has a large number of tokens decays to zero in a rate that does not depend on the number

of agents.

2. In Section 4.2, we show that the tail bound in (C1) can be strengthened with f(M) =O(( 2
3
+

δ)M) for any δ > 0, where O(·) hides an implicit constant that may depend on n (Theorem 2). The

proof relies on Lyapunov arguments and is given in Appendix 8.4.

3. In Section 4.3, we show that as n grows large, (C1) holds with f(M) = (1/2)M (Theorem

3). The proof organization for Theorem 3 is as follows. We first present density dependent Markov

chains and Kurtz’s theorem. We then model our system as a density dependent Markov chain, and

use Kurtz’s theorem to characterize our system in the limit via a system of ordinary differential

equations. Finally, we study the solution of this system to prove Theorem 3.

4. We conjecture that (C1) holds for any n≥ 2 with f(M) = aM , where a∈ [1/3,1/2] (Conjecture

1).

6 We note that similar results hold even with less amount of service availability in the following sense. Suppose that
at each time period, at most 2 agents are available to provide service with probability 0<β < 1, and only one agent
is available to provide service with probability 1− β, independently. The analysis of this system is very similar and
given in Appendix 8.2. This suggests that even with having a weaker power of tie-breaking, two agents can still trade
favors while keeping the token system stable.
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4.1. Stability

In general, it seems difficult to determine whether a given system (n,P,Q,d) is stable. Indeed,

the results of the previous section show that already for n= 2, this can be highly sensitive to the

precise values of P and Q. The next result shows that in the symmetric case, stability is achieved

for any n≥ 2, assuming d≥ 2.

Theorem 1. The token system is stable for any d≥ 2 when the agents are symmetric. Further-

more, (C1) holds with f(M) = 5/M .

The proof of Theorem 1 is deferred to Appendix 8.3. By analyzing the expected one-step tran-

sition difference of the potential function
∑n

i=1E[(sti)2], we show that the Markov chain (st : t≥ 0)

has a stationary distribution, and E[|sti|]≤ 5 for all i∈A and for all t large enough by exploiting a

recursion on the expected one-step transition difference of the potential function. Theorem 1 then

follows from Markov’s inequality.

4.2. Exponential decay

We next offer a refined result, showing that under symmetry conditions, the tail bound on token

profiles decays exponentially. This improves upon the polynomial bound previously established in

Theorem 1.

Theorem 2. For the token system with d≥ 2 and symmetric agents, (C1) holds with f(M) =

O(aM) for any a> 2/3, where O(·) hides implicit constant factors possibly depending on n.

Unlike in Theorem 1, the constant in the bound is implicit and may depend on the size n of the

system. Since we are unable to explicitly characterize the implicit constant, it is not clear under

which regimes the exponential bound dominates the polynomial bound in Theorem 1 and vice

versa. The proof of Theorem 2 requires the following key observation. For notational convenience,

we write Zt
λ :=

∑n

i=1 e
λsti and Et

λ :=E[Zt
λ].

Lemma 1. For λ> 0, if both limsupt→∞Et
λ <∞ and limsupt→∞Et

−λ <∞, then (C1) holds with

f(M) =O(e−λM).

Proof of Lemma 1. Note that whenever |stj| > M for some j ∈ A, we must have Zt
λ + Zt

−λ =∑n

i=1 e
λ|sti| + e−λ|sti| > eλM . By Markov’s inequality,

P(|sti|>M)≤ P
( n∑

i=1

eλ|s
t
i| + e−λ|sti| > eλM

)
≤ e−λM(Et

λ +Et
−λ).

The quantity Et
λ +Et

−λ is uniformly bounded for all t sufficiently large, finishing our proof. □
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Lemma 1 prepares the ground for us to apply the Lyapunov method with Et
λ as a family of

potential functions; it will suffice to establish the asymptotic finiteness of Et
λ for λ in the interval

(− log 1.5, log 1.5), where log is the natural logarithm. Our proof will proceed in two steps. First,

we show that limsupt→∞Et
λ <∞ for λ sufficiently close to zero (possibly depending on n). Then

we remove this dependency and widen the range of λ to cover the desired interval using a fixed

point argument, exploiting the log-convexity of the mapping λ 7→Et
λ. The proof of Theorem 2 is

deferred to Appendix 8.4.

4.3. Stability in the large

In this section, we study the large market setting to offer intuition regarding the dynamics of the

market by focusing on the densities of agents with a given number of tokens. What we establish

next suggests that stability is “well-behaved” in the large; as n grows large, (C1) holds with

f(M) = ( 1
2
)M .

Let π be the steady-state distribution of the Markov chain (st : t ≥ 0) granted by Theorem 1.

For any M ∈Z+, define pn,M := Pπ(|st1| ≤M) when there are n symmetric agents.

Theorem 3. limn→∞ pn,M ≥ 1− (1/2)M for all M ∈Z+.

We will use Kurtz’s theorem on density dependent Markov chains, which allows us to analyze

the stochastic process as a deterministic process in the limit. This analysis helps us to characterize

the steady-state distribution of the system as the number of agents grows large and thus, proving

Theorem 3.

Density dependent Markov chains. We begin with the definition of density dependent Markov

chains, which is given in Kurtz (1981) for finite dimensional systems and extended by Mitzenmacher

(1996) to countably infinite dimensional systems. Let Z∗ be either Zm for some finite dimension m,

or ZN, and similarly define R∗. Let L⊆Z∗ be the set of possible non-zero transitions of the system.

For each l⃗ ∈L, define a nonnegative function βl⃗ : R∗ → [0,1].

Definition 1. A sequence (indexed by n) of continuous time Markov chains (Xn(t) : t ≥ 0)

on the state spaces Sn =
{
k⃗/n : k⃗ ∈Z∗

}
is a density dependent Markov chain if there exists a

βl⃗ : R∗ → [0,1] such that for all n the transition rate of Xn is given by q(n)x,y = nβn(y−x)(x), x, y ∈ Sn.

In Definition 1, the index n can be interpreted as the total population or volume of the system,

and the components of k⃗/n can be interpreted as the densities of different types present in the

system. The βl⃗ (x) can be interpreted as the probability of transition l⃗ from x ∈ Sn to y ∈ Sn,

where nx+ l⃗= ny. Given a density dependent Markov chain Xn with transition rates q(n)x,y = q
(n)

k⃗,⃗k+l⃗
=

nβl⃗ (k⃗/n), define F (x) =
∑

l⃗∈L l⃗βl⃗ (x). The following theorem is key in our analysis:
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Theorem 4 (Kurtz’s theorem (Kurtz 1981, Mitzenmacher 1996)). Suppose we have a

density dependent Markov chain Xn (of possibly countably infinite dimension) satisfying the Lips-

chitz condition |F (x)−F (y)| ≤M |x−y| for some constant M . Further suppose limn→∞Xn(0) = x0,

and let X be the deterministic process:

X(t) = x0 +

∫ t

0

F (X(u))du, t≥ 0. (1)

Consider the path {X(u) : u≤ T} for some fixed T ≥ 0, and assume that there exists a neighborhood

K around this path satisfying ∑
l⃗∈L

|⃗l| sup
x∈K

βl⃗ (x)<∞. (2)

Then limn→∞ supu≤T |Xn(u)−X(u)|= 0 almost surely.

The Lipschitz condition ensures the uniqueness of the solution for the differential equation Ẋ =

F (X), which follows by taking the derivative of (1) with respect to t.7 Condition (2) ensures that

the jump rate is bounded in the process. Kurtz’s theorem implies that as n→∞, the behavior of

a density dependent Markov chain can be characterized by the deterministic process given in (1),

where the convergence holds on a finite time interval [0, T ] for an arbitrary T . We next model and

study our system as a density dependent Markov chain, which we refer to as the finite model.

The finite and infinite models. Let us model the system with n symmetric agents as a density

dependent Markov chain and denote it by (Xn(t), t ≥ 0). Note that in Definition 1, the βl⃗’s are

independent of n, and the transition rates are linear in n. In order to fit our system to this

definition, we assume that each agent has an exponential clock with rate 1. The ticking of agent

i’s clock corresponds to a service request by i, and the service provider is selected immediately

using the minimum token selection rule. Note that because of the memoryless property and the

continuity of the distribution that governs the clocks, agents request service uniformly, and exactly

one agent requests service at a time. As a slight abuse of notation, let ni(t) be the number of

agents with i tokens at time t, mi(t) be the number of agents with at least i tokens at time

t, and zi(t) := mi(t)/n be the fraction of agents with at least i tokens at time t. Let z⃗(t) =

(..., z−2(t), z−1(t), z0(t), z1(t), z2(t), ...), and we drop the time index t when the meaning is clear. We

represent the state of Xn by z⃗ = k⃗/n ∈ ZN/n. Let us call this process the finite model. Note that

the initial state of Xn is z⃗(0) = (...,1,1,1,0,0, ...), where zi(0) = 1 for all i≤ 0, and zi(0) = 0 for all

i≥ 1.

Next, we describe the transition probabilities βl⃗’s. The set of possible non-zero transitions from

k⃗= nz⃗ is L= {eij : i, j ∈Z, i ̸= j}, where eij is an infinite dimensional vector of all zeros except the

7 For example, see Lemma 4.1.6 in Abraham et al. (2012).
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i’th index (which corresponds to the index of zi) is −1 and the j’th index (which corresponds to

the index of zj) is 1. Note that after transition eij occurs, nzi decreases by 1 and nzj increases

by 1 simultaneously. Hence, the transition eij corresponds to the event when an agent with i

many tokens requests service and an agent with j − 1 many tokens provides service. Since the

probability that the service requester has i many tokens is zi − zi+1, and the probability that the

service provider has j many tokens is zdj − zdj+1, we have βeij (z⃗) = (zi − zi+1)(z
d
j−1 − zdj ).

8 Denote

the infinite model by X, which is the limit of the finite model Xn, i.e., X = limn→∞Xn. Since

X is characterized by the deterministic process (1), we need to analyze the components of F (x).

Note that the i’th component of F (x) =
∑

l⃗∈L l⃗βl⃗ (x) (which corresponds to zi) is
∑

j∈A\{i}(zj −

zj+1)(z
d
i−1 − zdi )−

∑
j∈A\{i}(zi − zi+1)(z

d
j−1 − zdj ), which simplifies to

(1− zi + zi+1)(z
d
i−1 − zdi )− (1− zdi−1 + zdi )(zi − zi+1) = (zdi−1 − zdi )− (zi − zi+1). (3)

Remark 1. In the well-known supermarket model, customers arrive according to a Poisson

process with rate λn, λ< 1, where there are n servers that serve according to the FIFO (first in, first

out) rule. An arriving customer considers only a constant number (d) of servers independently and

uniformly at random from the n servers with replacement, and she joins the queue that contains

fewest customers (any ties are broken arbitrarily). The service time for each customer is distributed

exponentially with rate 1. Using this language, our model corresponds to this dynamic system,

where the total number of customers is fixed throughout the process, which restricts the state

space of the underlying process drastically. Our system belongs to the family of dynamic systems

referred as the closed model in Mitzenmacher (1996). Our technical contributions here are twofold.

First, the main focus of this literature is on the expected longest-queue length and its dependence

on the service availability parameter (d), whereas we refine this goal and further study tail-bounds

on queue-lengths. Second, as stated in Mitzenmacher (1996), the steady-state probability that a

certain queue has more than M customers can be found by solving certain constraints that are

derived from Theorem 4, and in general, solution to these constraints does not appear to have a

closed form. As we argue next, we will be able to bound the steady-state probabilities without

obtaining a closed form solution.

Towards the proof of Theorem 3. Now that we have represented our system using the finite

model, we are ready to prove Theorem 3. The proof is organized as follows. We first show that

the conditions of Theorem 4 hold. Then using Theorem 4, we obtain the system of ordinary

8 The probability that all available agents have at least j many tokens is zdj , and we subtract the probability that all
available agents have at least j+1 many tokens, which is zdj+1.
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differential equations that characterize the infinite model. This characterization lets us represent

the probability of interest in (C1) as n grows large using π0 (the fraction of agents that have at

least 0 tokens in the long-run). Finally, we find lower and upper bounds for π0 to conclude.

Condition (2) is clearly satisfied since the magnitude of any jump is bounded, and the jump rate

is bounded above by 1 for any state. We also show in Appendix 8.5 that the Lipschitz condition

of Theorem 4 holds with M = 2+2d. By differentiating (1) with respect to t and using (3), we get

the following system of ordinary differential equations that characterizes the infinite model:

dzi
dt

= (zdi−1 − zdi )− (zi − zi+1) for all i∈Z. (4)

Intuitively, (4) can be interpreted as follows. Let us consider the expected change inmi (the number

of agents with at least i many tokens) over a small time interval dt. First note that a transition

occurs whenever one of the agent’s exponential clock ticks, which happens with rate ndt. Under

such transition, mi increases by 1 if an agent with i− 1 many tokens is selected as the service

provider, which happens with probability zdi−1 − zdi . mi decreases by 1 if an agent with i many

tokens is selected as the service requester, which happens with probability zi − zi+1. Hence, the

expected increase in mi is (z
d
i−1 − zdi )ndt, and the expected decrease in mi is (zi − zi+1)ndt, which

gives dmi = (zdi−1 − zdi )ndt− (zi − zi+1)ndt, and since mi/n= zi, dividing both sides by ndt gives

(4).

Define an equilibrium point, which is a point a⃗ such that if z⃗(t′) = a⃗, then z⃗(t) = a⃗ for all t≥ t′.

Denote the equilibrium point of the infinite model by π⃗, and assume d= 2 for simplicity from now

on (the following arguments can be easily generalized for d> 2). Clearly π⃗ is an equilibrium point

of the infinite model if and only if dπi
dt

= 0 for all i∈Z. Moreover, since agents start with 0 tokens

and exchange one token at each transition, the expected number of tokens agents have is 0, and it

can be written as follows:∑
i∈Z

i · ni

n
=
∑
i≥1

i · ni

n
+
∑
i≤0

i · ni

n
=
∑
i≥1

mi

n
−
∑
i≤0

n−mi

n
=
∑
i≥1

zi −
∑
i≤0

(1− zi) = 0. (5)

Using (4) and (5), π⃗ can be found by solving the following system of equations:

(π2
i−1 −π2

i )− (πi −πi+1) = 0 for all i∈Z, (6)∑
i≥1

πi −
∑
i≤0

(1−πi) = 0. (7)

Note that (6) implies πi+1−π2
i = π0−π2

−1 for all i∈Z. Since limi→∞ πi = 0, we have π0 = π2
−1, and

inductively we have the following relation:

πi+1 = π2
i for all i∈Z. (8)
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Using (8), (7) becomes
∑

i≥1 π
2i

0 −
∑

i≥0(1− π2−i

0 ) = 0. Such series are known as lacunary series,

where the function has no analytic continuation across its disc of convergence (see Hadamard’s

Gap Theorem). There is no closed form expression for such series to the best of our knowledge

and thus, we are unable to find the equilibrium point explicitly. Note that in the long-run, the

probability that |sti| ≤ M for any i ∈ A is equal to π−M − πM+1. Using (8), proving that for all

M ∈ Z+, limn→∞ pn,M ≥ 1 − aM for some a ∈ (0,1), is equivalent to proving that the following

inequalities hold:

π2−M

0 −π2M+1

0 ≥ 1− aM for all M ∈Z+. (9)

Lemma 2. We have 1
2
<π0 <

3
4
.

The proof of Lemma 2 is given in Appendix 8.5, and now we use it to prove Theorem 3.

Proof of Theorem 3. We will show that g(M) := π2−M

0 − π2M+1

0 − 1 + 2−M ≥ 0 for all positive

integers M , which implies that (9) is satisfied with a= 1
2
. Note that limM→∞ g(M) = 0. Hence, we

will show that g(M)≥ g(M + 1) for all M ∈ Z+. It is easy to check that g(M)≥ 0 for all M ≤ 6

using Lemma 2. The derivative of g with respect to M is dg(M)

dM
= log(π0) · log(0.5) · π2−M

0 · 2−M +

log(π0) · log(0.5) ·π2M+1

0 · 22M+1 · 2−M − log(2) · 2−M , where log is the natural logarithm. By Lemma

2, we have 1
2
<π0 <

3
4
, and thus 0.19< logπ0 · log(0.5)< 0.5. Since π2−M

0 ≤ 1, the first term in dg(M)

dM

is upper bounded by 1
2
· 2−M . For the second term, note that π8

0 · 2< 1
3
. Since 2M+1 > 8(2M + 1)

for all M ≥ 6, the second term is upper bounded by 1
2
· 1
3
· 2−M , and dg(M)

dM
is upper bounded by

1
2
· 2−M + 1

6
· 2−M − log(2) · 2−M ,

which is negative since log(2)> 2/3. Hence, we have shown that g(M) is a decreasing function

on [6,∞], which concludes the proof. □

We close this section with the following conjecture:

Conjecture 1. Assume that the agents are symmetric. Then for all n ≥ 2, (C1) holds with

f(M) = aM for all M ∈Z+, for some a∈ [1/3,1/2].

Recall that pn,M = Pπ(|st1| ≤M) when there are n symmetric agents, where π is the steady-state

distribution of the Markov chain (st : t≥ 0).9 Figure 1 shows the behavior of pn,M and suggests the

following conjecture:

Conjecture 2. pn+1,M ≤ pn,M for all n≥ 2 and for all M ∈Z+.

Note that Figure 1 suggests that for each M , pn,M converges to a limit point as n grows large.

The precise values from the left figure for n= 50 are p50,1 = 0.6184, p50,2 = 0.8645, p50,3 = 0.9500

9 Because of the symmetry, in the steady-state distribution, the probability of −M ≤ sti ≤M equals to the probability
of −M ≤ stj ≤M for any agents i, j ∈A.
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Figure 1 The behavior of pn,M versus n. In the simulation, the market runs until t= 2 · 107 (the first 500,000

time periods are ignored). For each n, the probabilities for each agent are computed separately, and the means

are reported.

and p50,4 = 0.9759. Let π−4 = α. Since p∞,M = π−M − πM+1, using (8), consider the following sets

of equations and the corresponding positive real solutions:

• p50,1 = α8 −α64 = 0.6184 with two positive real roots α≈ 0.947656,0.975067.

• p50,2 = α4 −α128 = 0.8645 with two positive real roots α≈ 0.969503,0.975035.

• p50,3 = α2 −α256 = 0.9500 with two positive real roots α≈ 0.975598,0.984804.

• p50,4 = α−α512 = 0.9759 with two positive real roots α≈ 0.975904,0.991964.

The closeness of the highlighted roots in the above sets of equations suggests that there is a

consistency between the approximate limit point in Figure 1 and our analysis for the infinite model.

Note that π−4 ≈ 0.975 implies π0 ≈ 0.667 by (8). Using our analysis for the infinite model and

assuming Conjecture 2, observe that (C1) is satisfied for the system with any number of symmetric

agents with 1
3
≤ a≤ 1

2
, which implies Conjecture 1.

Remark 2. Given that there are n symmetric agents, let qn,M = P(st1 ≤M) and rn,M = P(st1 ≥

−M), for all M ∈ Z+. Figure 2 shows the behaviors of qn,M and rn.M . Interestingly, as Figure 2

shows, the monotonicity property seems to hold for rn,M , but not for qn,M .

5. Strategic considerations

This section offers a microeconomic justification for the notion of stability defined by conditions

(C1) and (C2). Suppose that agents gain a payoff π > 0 whenever they receive service, and incur

a cost c ∈ [0, π) whenever they provide service. We assume that c < π, since otherwise providing

service is inefficient, and the optimal mechanism is to never provide service.

We consider a token system (n,P,Q,d) under the minimum token selection rule. For simplicity,

we focus on the symmetric case of pi = qi =
1
n
for all i ∈ A, so that all agents are equally likely

to request service and be available to provide service. We suppose that at time t= 0, agents can
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Figure 2 The behaviors of qn,M and rn,M versus n. In the simulations, the market runs until t= 2 · 107 (the first

500,000 time periods are ignored). For each n, the probabilities for each agent are computed separately, and the

means are reported.

either opt out of the token system, or else commit to participate for some fixed number of periods

T . Assuming all n agents participate, each agent i serves as a requester some (random) number of

times during the process, which we denote by Ai, and each agent serves as a provider Bi times.

Thus, the total payoff to agent i is Ui := πAi − cBi. Note that by the symmetry assumption, the

expectation of Ui is

E[Ui] =
T

n
(π− c).

In particular, this is strictly larger than zero, so if agents maximize their expected payoffs, then

they will opt in. Note that this holds independent of d (in particular, even in the unstable case of

d= 1).

The advantage of stability is not that it provides agents with higher expected payoff, but rather

that it lowers their risk. A simple model of risk aversion used in economics is that of mean-

variance preferences.10 Under these preferences, which are parametrized by κ > 0, agents desire

a higher expected payoff but also a lower variance, and evaluate a risky prospect by subtracting

from its expectation κ times its variance. In particular, in our case agent i will choose to opt in if

E[Ui]−κVar(Ui)> 0.

When d = 1, the variance of Ui is linear in T , since Ai and Bi are independent. Thus, agents

will only opt in if κ is low enough. Intuitively, this unstable system is risky because agents are not

unlikely to be left with many tokens at time T , which would mean that they provided service more

often than they received it, resulting in a negative payoff.

10 We choose this classical model (e.g., see Markowitz 1952, Tobin 1958) for its simplicity, but a similar conclusion
applies for other, more sophisticated models, such as CARA preferences over monetary gambles. See Pomatto et al.
(2020) for a recent axiomatization of mean-variance preferences.
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In contrast, when d≥ 2, stability implies that the variance of Ui is bounded from above, inde-

pendent of T . Since the expectation of Ui increases linearly, it follows that even agents with high

κ will opt in, assuming T is large enough. This observation provides a foundation for why stable

token systems are attractive to strategic economic agents: stable systems reduce agents’ risk.

Relating to the literature.We further discuss our stability notion in the context of the literature

that considers dynamic favor exchange games with discounting. Several papers study settings with

payoff π and cost c < π per service as above, but (instead of choosing whether to opt in) agents’

strategies depend on histories of exchanges. So an agent can refuse to provide service at any time

period. In these models, each period one agent is selected at random to request service, and another

(available) agent is selected to provide service according to some selection rule.

Since c < π, always trading (provisioning a service request) maximizes social welfare. However,

demand is not always met, and there are two sources for this efficiency loss. First, an agent may

decline to provide service when her number of tokens exceeds some threshold. This indeed happens

when the service provider is selected uniformly at random (Friedman et al. 2006, Kash et al. 2015).

The incentive to decline service is alleviated when there is a steady-state (Johnson et al. 2014, Bo

et al. 2018), since an agent will be rewarded for her service in finite time in expectation. Each of

the conditions (C1) and (C2) implies that the token system has a steady-state.

While the token system under the minimum token selection rule has a steady-state, an agent

may still prefer to decline service provision when her number of tokens exceeds some threshold.

Indeed, Johnson et al. (2014) and Bo et al. (2018) show the existence of an ϵ-Nash equilibrium,

thus bounding agents’ benefit from declining service.11 Our results on condition (C1) suggest how

concentrated the token profiles are, and in particular, the likelihood of different level of thresholds

being reached. So, for example, even if punishments are feasible, how concentrated the token profile

is (i.e., the structure of f in (C1)) can guide a social planner whether punishments are needed.

Second, inefficiency can arise when an agent demands a service, but has zero tokens. Johnson

et al. (2014) show that (when service is always provided when feasible) the minimum token selection

rule minimizes the probability of this event. Bo et al. (2018) show that the likelihood of this event

vanishes when n grows large and a constant fraction of agents are available to provide service

for each request. In our setting, instead of zero, a social planner may decide to ban an agent

from requesting service if her tokens are below some (possibly negative) threshold. Condition (C1)

implies that an agent is unlikely to have a large deficit of tokens and explicitly quantifies the

probability of this event. Finally, (C2) complements (C1) so that agents benefit from providing

service in expectation, ensuring average positive utility in finite time.

11 Johnson et al. (2014) use punishments to attain this, whereas Bo et al. (2018) assume punishments are not feasible,
but they require a large market, in which many agents are available to provide service.
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6. Application: Kidney Exchange

In this section, we discuss how our model and insights can be applied to multi-hospital kidney

exchange platforms. We begin with some background, then discuss how to apply the model, and

provide results from numerical simulations to conclude.

6.1. Background

Kidney exchange platforms arrange swaps between incompatible patient-donor pairs so that

patients receive a transplant from a compatible donor. Compatibility between a patient and a donor

requires both ABO (blood-type) compatibility12 and tissue-type compatibility, which means that

the patient cannot have an antibody to one of the donor’s antigens. Patient sensitivity is based on

her antibodies.13

Easy- and hard-to-match pairs. Pairs can generally be categorized as easy- or hard-to-match

based on their blood types and the patient sensitivity levels. To get some intuition, assume for

simplicity that there are just two blood types, A and O. In a typical pool, there are many more O-A

patient-donor pairs than A-O patient-donor pairs (Roth et al. 2007).14 The shortage of O donors

implies that O-A pairs are hard-to-match. A-O patient-donor pairs can be easy- or hard-to-match,

depending on whether the A patient is highly sensitized or not.15 Similarly, X-X incompatible pairs

(O-O or A-A) are ABO compatible with each other, and a majority of these pairs have highly

sensitized patients making them hard-to-match pairs (Agarwal et al. 2019). Efficiency is aligned

with matching hard-to-match with easy-to-match pairs. Intuitively, easy-to-match pairs have a

positive contribution to the exchange pool while hard-to-match pairs may compete to match with

easy-to-match ones.

Free riding and token systems. In the US, hospitals’ participation on platforms is voluntary,

and they can decide which pairs to enroll. A common behavior that emerged is enrolling pairs

they cannot match internally (Agarwal et al. 2019). This behavior emerged since matching rules

on platforms do not account for the types of pairs each hospital enrolls.16 To alleviate free riding

behavior, the National Kidney Registry (NKR) adopted an ad-hoc token system that rewards

hospitals based on their marginal contribution to the platform.17 Exchanges arranged through the

12 The donor cannot have a blood protein that the patient does not have.

13 The Panel Reactive Antibody (PRA) measures the likelihood of a patient to be tissue-type incompatible with a
random donor in the population based on her antibodies.

14 An A patient who is compatible with her intended O donor will go through a direct donation.

15 Note that the patient is more likely to be sensitized than a random patient as it is tissue-type incompatible with
her donor.

16 Consider for example a “sub-market” with A-O and O-A pairs, and two hospitals. Suppose one hospital enrolls all
pairs but the other enrolls only O-A pairs that cannot be matched internally. If the platform selects randomly for
each A-O which O-A pair to match with, then the second hospital will benefit without contributing to the system.

17 This program is called the Center Liquidity Contribution program (see http://www.kidneyregistry.org/docs/

CLC_Guidelines.pdf), inspired by Ashlagi and Roth (2014) who pointed out the need for a “frequent-flyer” program.

http://www.kidneyregistry.org/docs/CLC_Guidelines.pdf
http://www.kidneyregistry.org/docs/CLC_Guidelines.pdf
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platform generate a transfer of tokens between hospitals and the platform. The token values for

each type of pair are based on the type of the pair, and the intention is to capture the marginal

benefit to the platform. Notably, the number of tokens is negative for hard-to-match pairs (such

as O-A pairs, or other pairs with highly sensitized patients), and positive for easy-to-match pairs

(such as A-O or X-X patient-donor pairs with patients that are not highly sensitized).18 The actual

values have been updated over time based on experimentation and the marginal benefit observed

in practice.

6.2. Applying the model

Our stylized model can be applied here as follows. Hospitals can be viewed as agents in our model

and we limit our attention to exchanges that include two pairs. At each time period an easy-to-

match pairs arrives to a (random) hospital. A random subset of hospitals have a hard-to-match

pair in the pool that can exchange with the arriving easy-to-match pair.19 One of these hospitals

is chosen for the exchange according to a selection rule, and the chosen hospital pays one token to

the hospital with the easy-to-match pair. The maximum token selection rule selects the hospital

(among the subset) with the most number of tokens.

Since for each hospital, the number of tokens it has equals the difference between the number

of easy- and number of hard-to-match pairs it matched, the maximum token selection rule favors

the hospital (with a compatible hard-to-match pair) who has the largest net contribution to the

platform in order to match its hard-to-match pairs.

Observe that in our stylized model, we associate a service request with an arrival of an easy-to-

match pair to a (random) hospital, and available agents correspond to a subset of hospitals that

have a hard-to-match pair in the pool that is compatible with the easy-to-match pair. Similarly

in our model, since the number of tokens a hospital has equals the difference between the number

of hard- and number of easy-to-match pairs it matched, the minimum token selection rule favors

the hospital that contributed the most to the platform. This modeling is chosen to be consistent

with the literature on trading favors and the power of two choices. Note that this is without loss of

generality for our purposes, since the distribution of positive number of tokens under the maximum

token selection rule symmetrically mirrors the distribution of negative number of tokens under the

minimum token selection rule and vice versa.

A few comments are in place. First, in practice, easy-to-match pairs match quickly (Ashlagi et al.

2018), which is aligned with our assumption that such agents are served immediately. Moreover,

18 Almost all platforms also reward hospitals with ending altruistic-donor chains in their hospitals based on how many
of altruistic donors they submitted to the system (Ashlagi et al. 2013).

19 It is useful to consider A-O and O-A pairs as a separate economy than the one of O-O pairs. But as discussed
earlier, within each of these, there are both easy- and hard-to-match pairs.
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hard-to-match pairs whose patients are highly sensitized may have very few possible matches

(Ashlagi et al. 2012), which motivates the consideration of small values of d.

Tracking the evolution of the underlying compatibility graph is highly intractable. Instead, our

model abstracts away from the graph structure and even from counting the number of hard-to-

match pairs hospitals have in the pool (our service availability distribution Q remains fixed).

Despite this abstraction, our model can shed light on the predicted behavior of token systems for

kidney exchange platforms.

The symmetric case corresponds further to the case where hospitals are of the same size and

have the same balance between easy- and hard-to-match pairs. That these balances are similar

across hospitals is a natural assumption due to the biological structure. Next, we provide numerical

simulations to provide further insights for the case in which hospitals differ in size and balance.

We also discuss a simple asymmetric case with two types of agents in Appendix 8.6 and derive

analogous differential equations to the symmetric case, which can be used for numerical studies.

6.3. Simulations

In this section, we present results from numerical simulations using data from the National Kidney

Registry (NKR) platform. We simulated the token distribution of participating hospitals under the

minimum token selection rule. There are 1881 patient-donor pairs and 84 hospitals in the data. We

restrict our attention only to exchanges between two patient-donor pairs (2-way cycles) and refer

to such exchanges as matches. Each time period represents one day. All hospitals have 0 tokens at

the beginning, and the kidney exchange pool is initially empty. At each time period, the following

steps are conducted in order:

• Step 1: Sample with replacement a patient-donor pair p uniformly at random from the entire

set of pairs. This pair p is a tentative service requester.

• Step 2: Among the pairs that are waiting in the pool, identify the set of patient-donor pairs

who can match with the pair p.

− Step 2.1: If p has more than one possible match, use the minimum token selection rule

to determine the service provider; that is, match p with the patient-donor pair that belongs to the

hospital with the least amount of tokens (ties are broken uniformly at random). After the match

is performed, the hospital of the service requester pays one token to the hospital of the service

provider.

− Step 2.2:: If p has no possible matches, add p to the pool (p is no longer a tentative service

requester).

• Step 3: Each patient-donor pair in the pool leaves the system unmatched with probability 1
365

,

independently.
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Figure 3 The token distribution of 84 hospitals

under the minimum token selection rule after 105

time periods.

Figure 4 The token distribution of 84 hospitals

under the uniform selection rule after 105 time

periods.

Observe that we do not categorize the easy- and hard-to-match pairs based on characteristics

prior to the simulation. Instead, a pair is considered as a service requester (an easy-to-match pair)

if it can match upon arrival to some pair in the pool. Figure 3 shows the token distribution of 84

hospitals after running the simulation 105 time periods. Note that overall, the token distribution

is remarkably stable.20

The are seven hospitals whose number of tokens drop below -30; the number of pairs in these

hospitals are 1,2,2,2,2,5, and 28. The reason of deviation for the hospitals with only few pairs is

apparent from the data; these hospitals only have easy-to-match pairs, and they match immediately

upon arrival. The hospital with 28 pairs also has a large imbalance in favor of easy-to-match pairs

(in contrast to the composition in typically large hospitals). This prevents the token system from

rewarding back such hospitals. Three hospitals reach more than 30 tokens and have the following

number of pairs: 6,13, and 18. The reason for the deviation in this case is that almost all of

their pairs are hard-to-match. Figure 4 shows the token distribution of hospitals when the service

provider is chosen uniformly at random, instead of using the minimum token selection rule. Note

that there are large deviations and no oscillations.

Remark 3. The simulations also reveal that when there is at least one match in the pool for

the service requester, almost 67% of the time there are at least two compatible pairs for the service

requester; this suggests that there is often multiplicity of matchings (tie-breakings). However, the

average number of matches for an easy-to-match pair (i.e., when a pair matches immediately upon

arrival) is almost 7. This suggests that the average number of potential matches in the pool (or

service availability) is small. So in this case, even few ties allow the token system to be stable.

20 We note that the token distribution shows a similar behavior under the following alternative specification. When
a pair is sampled, instead of associating the pair with its original hospital, it is associated with a hospital randomly,
where probabilities are proportional to hospital sizes.
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7. Final remarks

This paper adapts methodologies from stochastic processes and ideas from the power of two choices

literature to illustrate that token systems based on the minimum token selection rule are likely

to behave well even in thin marketplaces, where there can be very little availability of supply. We

identified settings, under which the token system is stable when only few agents are available to

provide service for any service request. Our analysis further provides concentration bounds for the

token distribution. We further discuss why a stable token system is attractive for strategic agents

interested in low participation risk.

In the context of kidney exchange, multi-hospital exchange platforms increase the chance for

hospitals to match their hard-to-match pairs. To alleviate free riding by hospitals, token systems

have been proposed and applied to incentivize participation by hospitals by accounting their contri-

bution to the platform (Agarwal et al. 2019). Our findings suggest that the possibility of breaking

ties in the matching process, even among few hospitals, enables the stability of the token system.

Breaking ties based on token balances allows platforms to reward hospitals with their contribution,

assuring the difference between hospitals’ tokens remains small. Numerical experiments reveal that

tie-breakings are likely to happen in kidney exchange, and token systems that account for hospitals’

contributions can ensure cooperation between hospitals. In practice, platforms use ad-hoc rules to

increase participation, and several platforms seek to equalize the number of donors and patients

of each “player” transplanted in every match (Biró et al. 2019, Mincu et al. 2020). Our findings

suggest that an arguably simpler (and less restrictive) token-based system is likely to behave well.

It is interesting to expand this work to identify conditions under which dynamic token systems can

be sustainable when the market exhibits more heterogeneity.
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8. Appendix
8.1. Proofs from Section 2.1

We start with the proof of the following proposition regarding the case d = 1, and then discuss

about the transition dynamics.

Proposition 2. The token system is not stable for any n≥ 2, P > 0 and Q> 0 when d= 1.

Proof of Proposition 2. Fix an agent i ∈ A. Then sti is a lazy random walk in one dimension.

In particular, we have

st+1
i =


sti +1 with probability

∑
j∈A\{i} pjqi

sti with probability 1−
∑

j∈A\{i} pjqi −
∑

j∈A\{i} piqj

sti − 1 with probability
∑

j∈A\{i} piqj

(10)

for all t ≥ 0. Note that if
∑

j∈A\{i} pjqi ̸=
∑

j∈A\{i} piqj, then E[sti] diverges as t → ∞ (i.e., the

random walk is transient). Now assume that∑
j∈A\{i}

pjqi =
∑

j∈A\{i}

piqj for all i∈A. (11)

Then sti is a lazy symmetric random walk. It is a well-known fact that sti will take all the values in

Z with probability 1 (i.e., the symmetric random walk is recurrent). Moreover, even though sti will

be 0 infinitely often with probability 1, the expected return time to 0 is infinity (i.e., the symmetric

random walk is null recurrent). Hence, (C1) and (C2) are not satisfied for any n ≥ 2, P > 0 and

Q> 0 when d= 1. □

As an immediate corollary to Proposition 2, consider the random tie-breaking selection rule,

under which the policy selects a service provider among d ≥ 1 available providers uniformly at

random. The behavior of the random walk sti follows a similar structure as in (10), where the

transition probabilities are state-independent;21 unlike (12), where the transition probabilities are

state-dependent and there is a possibility of stabilizing the random walk. Therefore, sti is again

either transient or null-recurrent random walk.

Corollary 1. Consider a token system (n,P,Q,d) under the random tie-breaking selection

rule. Then the token system is not stable for any n≥ 2, P > 0 and Q> 0 when d≥ 1.

Transition dynamics. For future calculations, let us denote the following outcome by (i, (j, k)):

i ∈A is the service requester, and {j, k} ⊂ A is the subset of agents who are available to provide

service. At each time period t, the outcome (i, (j, k)) occurs with probability pi2qjqk if j ̸= k and

with probability piq
2
j if j = k. Hence, i ∈A is the service requester at time t, j ∈A is the service

21 The transition probabilities of both random walks are identical if the agents are symmetric.
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provider if stk > stj, k ∈ A is the service provider if stj > stk, and one of j, k ∈ A is selected as the

service provider uniformly at random if stj = stk. Let rtjk, j, k ∈ A, j ̸= k, be the probability that

given that only agents j and k are available to provide service at time t, agent j is the service

provider. Then, we have

rtjk =


1 if stk > stj
1
2

if stk = stj
0 if stk < stj

.

Fix i∈A. We have st+1
i = sti +1 if one of the following outcomes occurs at time t:

• (j, (i, i)), where j ̸= i, which happens with probability
∑

j∈A\{i} pjq
2
i .

• (j, (i, k)), where j, k ̸= i, stk ≥ sti and agent i wins the tiebreak if any, which happens with

probability
∑

j∈A\{i}
∑

k∈A\{i} pj2qiqkr
t
ik.

Similarly, st+1
i = sti − 1 if one of the following outcomes occurs at time t:

• (i, (j, j)), where j ̸= i, which happens with probability
∑

j∈A\{i} piq
2
j .

• (i, (j, k)), where j, k ̸= i, j ̸= k, which happens with probability
∑

j∈A\{i}
∑

k∈A\{i,j} piqjqk.

• (i, (i, j)), where j ̸= i, sti ≥ stj and agent i loses the tiebreak if any, which happens with proba-

bility
∑

j∈A\{i} pi2qiqjr
t
ji.

Therefore, we have

st+1
i =


sti +1 with probability

∑
j∈A\{i} pjq

2
i +
∑

j∈A\{i}
∑

k∈A\{i} pj2qiqkr
t
ik

sti − 1 with probability
∑

j∈A\{i} piq
2
j +
∑

j∈A\{i}
∑

k∈A\{i,j} piqjqk +
∑

j∈A\{i} pi2qiqjr
t
ji

sti otherwise

.

(12)

Note that (12) behaves similar to (10); the main difference is that the transition probabilities in

(12) change as t changes because of the rtij terms, which are time-dependent. Processes such as (12)

referred as heterogeneous random walks, where the transition probabilities are state-dependent.

8.2. Proofs from Section 3

We start with the proof of Proposition 1. First, we describe the model here for convenience. Assume

that there are 2 agents (n= 2). We analyze the following discrete time birth-death process with

the state space S = {(a, b) : a≥ 1, a∈N, b= 1,2} ∪ {(0,0)}, which captures the system: the state

(a, b) represents the case in which agent b has a > 0 tokens, and (0,0) is the initial state. Denote

this birth-death process by (Zt : t≥ 0). Let Xt =maxi∈A sti and Y t =mini∈A sti.
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Proposition 1. The token system with 2 agents is stable if and only if qd1 < p1, q
d
2 < p2 and

d ≥ 2. Let π be the the steady-state distribution of the Markov chain (st : t ≥ 0). Then for all

M ∈Z+, we have

Pπ(|sti| ≤M) = 1−

(
p2q1

p1 − qd1

(
p2q

d
1

p1(1− qd1)

)M

+
p1q2

p2 − qd2

(
p1q

d
2

p2(1− qd2)

)M)
(
1+

p2q1
p1 − qd1

+
p1q2

p2 − qd2

) ,

for i= 1,2. Moreover, the expected time between two successive occurrences of the initial state (0,0)

is given by 1+
p2q1

p1 − qd1
+

p1q2
p2 − qd2

.

Proof of Proposition 1. The transition probabilities for the process (Zt : t≥ 0) are as follows:

Pr(Zt+1 = (1,1) |Zt = (0,0)) = p2

( d∑
i=1

i

d

(
d

i

)
qi1q

d−i
2

)
,

Pr(Zt+1 = (0,0) |Zt = (1,1)) = p1(1− qd1),

Pr(Zt+1 = (1,2) |Zt = (0,0)) = p1

( d∑
i=1

i

d

(
d

i

)
qi2q

d−i
1

)
,

Pr(Zt+1 = (0,0) |Zt = (1,2)) = p2(1− qd2),

Pr(Zt+1 = (a+1,1) |Zt = (a,1)) = p2q
d
1 for all a≥ 1,

Pr(Zt+1 = (a+1,2) |Zt = (a,2)) = p1q
d
2 for all a≥ 1,

Pr(Zt+1 = (a− 1,1) |Zt = (a,1)) = p1(1− qd1) for all a≥ 2,

Pr(Zt+1 = (a− 1,2) |Zt = (a,2)) = p2(1− qd2) for all a≥ 2.

Assume that the steady-state exists, and denote the steady-state vector by π. The detailed balance

equations are:

π(0,0)p2

( d∑
i=1

i

d

(
d

i

)
qi1q

d−i
2

)
= π(1,1)p1(1− qd1), (13)

π(0,0)p1

( d∑
i=1

i

d

(
d

i

)
qi2q

d−i
1

)
= π(1,2)p2(1− qd2), (14)

π(a,1)p2q
d
1 = π(a+1,1)p1(1− qd1) for all a≥ 1, (15)

π(a,2)p1q
d
2 = π(a+1,2)p2(1− qd2) for all a≥ 1, (16)



Ashlagi, Kerimov, Tamuz, and Zhao: The Power of Two in Token Systems
28

π(0,0) +
2∑

b=1

∞∑
a=1

π(a,b) = 1. (17)

It follows by (15) and (16) that

π(a,1) = π(1,1)

(
p2q

d
1

p1(1− qd1)

)a−1

for all a≥ 1, (18)

π(a,2) = π(1,2)

(
p1q

d
2

p2(1− qd2)

)a−1

for all a≥ 1. (19)

Using (13), (14), (17), (18) and (19), first note that since the infinite geometric series in (17) must

converge, the following are necessary and sufficient conditions for (Zt : t≥ 0) to have a steady-state:

p2q
d
1

p1(1− qd1)
< 1, or, equivalently qd1 < p1, (20)

p1q
d
2

p2(1− qd2)
< 1, or, equivalently qd2 < p2, (21)

where the equivalences in (20) and (21) follow from the fact that p1+p2 = 1. Using (17), (20), and

(21), we have

π(0,0) +π(1,1)

( ∞∑
a=1

(
p2q

d
1

p1(1− qd1)

)a−1)
+π(1,2)

( ∞∑
a=1

(
p1q

d
2

p2(1− qd2)

)a−1)
= 1. (22)

Using (13), (14) and (22), we have

π(0,0) =

(
1+

p2(
∑d

i=1
i
d

(
d
i

)
qi1q

d−i
2 )

p1 − qd1
+

p1(
∑d

i=1
i
d

(
d
i

)
qi2q

d−i
1 )

p2 − qd2

)−1

. (23)

Note that
∑d

i=1
i
d

(
d
i

)
qi1q

d−i
2 = q1

∑d

i=1

(
d−1
i−1

)
qi−1
1 qd−i

2 = q1(q1 + q2)
d−1 = q1. Similarly,∑d

i=1
i
d

(
d
i

)
qi2q

d−i
1 = q2. Hence, (23) simplifies to

π(0,0) =

(
1+

p2q1
p1 − qd1

+
p1q2

p2 − qd2

)−1

. (24)

Once we have π(0,0) as a function of pi’s and qi’s, we can write all the steady-state probabilities as

a function of pi’s and qi’s. Note that in the steady-state, Xt is bounded above by M ∈ Z+ with

probability 1−
∑∞

a=M+1 π(a,1) −
∑∞

a=M+1 π(a,2), which is equal to

1−

(
p2q1

p1 − qd1

(
p2q

d
1

p1(1− qd1)

)M

+
p1q2

p2 − qd2

(
p1q

d
2

p2(1− qd2)

)M)
(
1+

p2q1
p1 − qd1

+
p1q2

p2 − qd2

) . (25)
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Since Xt +Y t = 0 for all t≥ 0, for all M ∈Z+, Pπ(|sti| ≤M) is given by (25) for i= 1,2.

It is a well-known fact that starting from a state (a, b), the expected time of the first occurrence

of state (a, b) is 1
π(a,b)

. Hence, starting from state (0,0), the expected time of the first occurrence

of state (0,0) is

1

π(0,0)

=

(
1+

p2q1
p1 − qd1

+
p1q2

p2 − qd2

)
. (26)

□

Remark 4. E(T0) in (C2) follows from (26). The constant a in (C1) can be found using (25) as

follows. Define

x=
p2q

d
1

p1(1− qd1)
, y=

p1q
d
2

p2(1− qd2)
, c1 =

p2q1
p1 − qd1

1+
p2q1

p1 − qd1
+

p1q2
p2 − qd2

, and c2 =

p1q2
p2 − qd2

1+
p2q1

p1 − qd1
+

p1q2
p2 − qd2

.

Then (25) becomes 1−c1x
M −c2y

M . We want to find 0<a< 1 such that 1−c1x
M −c2y

M ≥ 1−aM ,

or aM ≥ c1x
M + c2y

M for all M ∈ Z+. Note that c1, c2 < 1. Hence, a can be chosen to be x+ y if

x+y < 1. Consider the case when x+y > 1. Let z =max{x, y}. Then c1x
M + c2y

M < 2zM . Clearly,

there exists M ′ ∈ Z+ such that 2zM < 1 for all M ≥ M ′. Pick 0 < a1 < 1 such that a1 > z and

aM ′
1 > 2zM

′
. Consider the inequalities aM ≥ c1x

M + c2y
M for all M <M ′. Since there are finitely

many inequalities, we can pick 0 < a2 < 1 such that these inequalities are satisfied. Thus in this

case, a can be chosen to be max{a1, a2}.

Intermediate availability. Suppose that at each time period, we have d= 2 with probability β

and d= 1 with probability 1− β, independently, for some β ∈ (0,1). We can capture this system

with the same birth-death process (Zt : t ≥ 0) with updated transition probabilities. Following

similar calculations as in the proof of Proposition 1, it follows that the following are necessary and

sufficient conditions for the process to have a steady-state:

βp2q
d
1 +(1−β)p2q1

βp1(1− qd1)+ (1−β)p1q2
< 1, (27)

βp1q
d
2 +(1−β)p1q2

βp2(1− qd2)+ (1−β)p2q1
< 1. (28)

It also follows that

π(0,0) =

(
1+

p2q1
β(p1 − qd1)+ (1−β)(p1q2 − p2q1)

+
p1q2

β(p2 − qd2)+ (1−β)(p2q1 − p1q2)

)−1

,



Ashlagi, Kerimov, Tamuz, and Zhao: The Power of Two in Token Systems
30

and in the steady-state, Xt is bounded above by M ∈Z+ with probability

1−π(0,0)(A+B), (29)

where

A=
p2q1

β(p1 − qd1)+ (1−β)(p1q2 − p2q1)

(
βp2q

d
1 +(1−β)p2q1

βp1(1− qd1)+ (1−β)p1q2

)M

,

B =
p1q2

β(p2 − qd2)+ (1−β)(p2q1 − p1q2)

(
βp1q

d
2 +(1−β)p1q2

βp2(1− qd2)+ (1−β)p2q1

)M

.

Similarly, since Xt +Y t = 0 for all t≥ 0, for all M ∈Z+, Pπ(|sti| ≤M) is given by (29) for i= 1,2.

When agents are symmetric and d= 2, (29) becomes 1− 2
2+β

( 2−β
2+β

)M . As Figure 5 shows, even for

small values of β, the token distribution is fairly balanced with high probability.

Figure 5 (29) as a function of β for several values of M when the agents are symmetric and d= 2.

8.3. Proof of Theorem 1

Proof of Theorem 1. Denote by kt the agent chosen to request service at time t, and denote by

It the set of agents chosen to be available to provide service at time t. Let |It| denote the size of It,

and note that |It| takes values in {1,2, . . . , d}. Let jt ∈ It be the agent chosen to provide service,

i.e., an agent chosen uniformly from the agents in i ∈ It that minimizes sti. Hence stjt =mini∈It s
t
i,

so that in particular, the service provider jt is an agent with the minimum number of tokens among

the available agents in It.

Let V t =
∑n

i=1(s
t
i)

2, and let

vt :=E[V t] =
n∑

i=1

E[(sti)2].
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Note that by symmetry, we have vt = nE[(st1)2]. Let Et be the event {kt = jt}, i.e., the event that

the service provider and requester are the same agent. Let Ec
t be the event {kt ̸= jt}. Since kt

is uniformly distributed and kt and jt are independent, the probability of Et is 1/n. Note that

conditioned on Et, it holds that s
t+1 = st. Then we have

vt+1 =
1

n
E[V t+1|Et] +

n− 1

n
E[V t+1|Ec

t ]

=
1

n
E[V t] +

n− 1

n
E[V t+1|Ec

t ]

=
1

n
vt +

n− 1

n
E[V t+1|Ec

t ].

Now,

E[V t+1|Ec
t ] =

∑
i∈A

E[(st+1
i )2|Ec

t ]

=E[(st+1
kt

)2|Ec
t ] +E[(st+1

jt
)2|Ec

t ] +
∑

i∈It\{jt}

E[(st+1
i )2|Ec

t ] +
∑

i∈A\It\{kt}

E[(st+1
i )2|Ec

t ]

=E[(stkt − 1)2 +(stjt +1)2|Ec
t ] +

∑
i∈It\{jt}

E[(sti)2] +
∑

i∈A\It\{kt}

E[(sti)2]

=−2E[stkt |Ec
t ] + 1+2E[stjt |Ec

t ] + 1+
∑
i∈A

E[(sti)2].

Since
∑

i∈A sti = 0 for all t≥ 0, we must have that E[stkt |Ec
t ]≥ 0. Since kt and jt are independent,

we have E[stjt |Ec
t ] =E[stjt ]. Hence,

E[V t+1|Ec
t ]≤ vt +2E[stjt ] + 2,

and so

vt+1 ≤ vt +
2(n− 1)

n
E[stjt ] +

2(n− 1)

n
.

Without loss of generality, assume that It = {1,2, . . . , |It|}. Now with probability n−(d−1), we have

that |It|= 1, in which case It = {jt}= {1}. Hence E[stjt | |It|= 1] = 0. With probability 1−n−(d−1),

we have that |It| ≥ 2, in which case stjt = min{st1, st2, . . . , st|It|} ≤min{st1, st2}. Using the fact that

min{a, b}= 1
2
(a+ b− |a− b|) for all a, b∈R, we get 2E[min{st1, st2}] =−E[|st1 − st2|], and we get

E[stjt | |It| ≥ 2]≤−1

2
E[|st1 − st2|].

Thus,

E[stjt | |It| ≥ 2]≤−1

2
(1−n−(d−1))E[|st1 − st2|],
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and we get

vt+1 ≤ vt − n− 1

n
(1−n−(d−1))E[|st1 − st2|] + 2.

Now we make use of the following claim. For real random variables Y,Z1, . . . ,Zn, we have

E
[∣∣∣∣Y − 1

n

n∑
i=1

Zi

∣∣∣∣]≤ 1

n

n∑
i=1

E[|Y −Zi|], (30)

where the claim follows immediately from convexity and Jensen’s inequality. Again by the symmetry

of the problem, we have

E[|st1 − st2|] =
1

n− 1

n∑
i=2

E[|st1 − sti|].

Therefore by (30) and using the fact that
∑n

i=2 s
t
i =−st1 for all t≥ 0, we have

E[|st1 − st2|]≥E
[∣∣∣∣st1 − 1

n− 1

n∑
i=2

sti

∣∣∣∣]=E
[∣∣∣∣st1 + st1

n− 1

∣∣∣∣]= n

n− 1
E[|st1|],

Therefore, we have

vt+1 ≤ vt − (1−n−(d−1))E[|st1|] + 2,

and via recursion, we get

vt ≤ 2t− (1−n−(d−1))
t−1∑
u=0

E[|su1 |].

Since vt ≥ 0, we have

1

t

t−1∑
u=0

E[|su1 |]≤
2

1−n−(d−1)
≤ 4, (31)

where the second inequality follows from the fact that for d,n≥ 2, the denominator 1−n−(d−1) is

at least 1/2.

Denote the distribution of st by µt ∈∆(Zn), and let νt = 1
t

∑t−1

u=0 µt. Let Y
t be a random variable

with distribution νt for all t≥ 1, and denote by Y t
i the i’th index of Y t for all i∈A. Then per (31),

we have

E[|Y t
i |] =

1

t

t−1∑
u=0

E[|sui |]≤ 4, (32)

for all i∈A.

Suppose towards a contradiction that the Markov chain has no stationary probability measure.

Then for any finite subset E ⊂Zn, it holds that limt→∞ P(sti ∈E) = 0 by standard arguments about

Markov chains. In particular, limu→∞E[|sui |] =∞, which contradicts (32). Thus, we have stability.
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Since the Markov chain has a stationary distribution, and since it is irreducible and aperi-

odic, the distribution of sti will converge to the stationary distribution. It follows from (32) that

limt→∞E[|sti|]≤ 4, and so E[|sti|]≤ 5 for all t large enough. Hence, it follows from Markov’s inequal-

ity that for all t large enough and for all i∈A, we have

P(|sti| ≥M)≤ 5

M
.

□

8.4. Proof of Theorem 2

Recall that for λ∈R, Zt
λ =

∑n

i=1 e
λsti and Et

λ =E[Zt
λ]. As a first step, we show that for λ sufficiently

close to zero, Et
λ has a negative drift and thus a finite limit.

Lemma 3 (Negative drift). For any λ∈R,

Et+1
λ ≤Cλ +(1− γλ)E

t
λ, (33)

where Cλ :=
|1−eλ|

n
and γλ :=

|1−eλ|
n2 + 2−2 coshλ

n
. In particular, when |λ|≲ 1/n, we have γλ > 0 and

thus, limsupt→∞Et
λ ≤Cλ/γλ <∞.

Proof of Lemma 3. Throughout the analysis, we will assume without loss of generality that

st1 ≤ st2 ≤ · · · ≤ stn. As in the proof of Theorem 1, we denote by kt and jt the agent chosen to request

service and the one chosen to provide service at time t, respectively.

By the law of total probability, we have

Et+1
λ =E

[
E[Zt

λ|st]
]
. (34)

First, consider λ> 0. Note that, through some straightforward albeit tedious arithmetic manip-

ulation, we have

E[Zt+1
λ |st] =Zt

λ +E
[(
e
λ(st

jt
+1) − e

λst
jt + eλ(s

t
kt

−1) − eλs
t
kt
)
·1jt ̸=kt

∣∣∣st]
=Zt

λ +(eλ − 1)E
[(
e
λst

jt − eλ(s
t
kt

−1)
)
·1jt ̸=kt

∣∣∣st] (35)

=Zt
λ +(eλ − 1)E

[(
e
λst

jt − eλ(s
t
kt

−1)
)∣∣∣st]−

(eλ − 1)E
[(
e
λst

jt − eλ(s
t
kt

−1)
)
·1jt=kt

∣∣∣st]
=Zt

λ +(eλ − 1)E[eλs
t
jt |st]− (1− e−λ)E[eλs

t
kt |st]−

(eλ − 1)E
[
e
λst

jt ·1jt=kt

∣∣∣st]+(1− e−λ)E
[
e
λst

jt ·1jt=kt

∣∣∣st]
=Zt

λ +(eλ − 1)E[eλs
t
jt |st]− 1− e−λ

n
Zt

λ+

2− eλ − e−λ

n
E
[
e
λst

jt

∣∣∣st]
≤
(
1− 1− e−λ

n

)
Zt

λ +(eλ − 1)E[eλs
t
jt |st], (36)
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where in the second last equality we use the fact that kt is uniform and independent of jt, and in

the last step we drop the last term as it is non-positive.

Claim 1. When d≥ 2, for λ> 0,

E[eλs
t
jt |st]−E[eλs

t
kt |st]≤ 1

n2

∑
1≤i<j≤n

(
eλs

t
i − eλs

t
j

)
≤ 1

n
− 1

n2
Zt

λ ≤ 0. (37)

Similarly, for λ< 0,

E[eλs
t
jt |st]−E[eλs

t
kt |st]≥ 1

n2

n∑
i=1

(
eλs

t
i − eλs

t
n

)
≥ 1

n2
Zt

λ −
1

n
≥ 0. (38)

As a result of the claim, for λ> 0,

E[Zt+1
λ |st]≤

(
1− 1− e−λ

n

)
Zt

λ+

(eλ − 1)
(
E[eλs

t
kt |st] + 1

n
− 1

n2
Zt

λ

)
=
(
1− eλ − 1

n

(
e−λ − 1+

1

n

))
Zt

λ +
eλ − 1

n
.

By the law of total probability,

Et+1
λ ≤ eλ − 1

n
+
(
1− eλ − 1

n

(
e−λ − 1+

1

n

))
Et

λ. (39)

For λ sufficiently small (namely, λ≲ 1/n), the coefficient γλ :=
eλ−1

n

(
e−λ − 1+ 1

n

)
> 0.

Similarly, for λ< 0,

E[Zt+1
λ |st]≤

(
1− 1− e−λ

n

)
Zt

λ+

(eλ − 1)
(
E[eλs

t
kt |st] + 1

n2
Zt

λ −
1

n

)
=
(
1− 1− eλ

n

(
1− e−λ +

1

n

))
Zt

λ +
1− eλ

n
.

Hence,

Et+1
λ ≤ 1− eλ

n
+
(
1− 1− eλ

n

(
1− e−λ +

1

n

))
Et

λ. (40)

Again, the recurrent coefficient is less than 1 when |λ|≲ 1/n, finishing our proof. □

Proof of Claim 1. Since

stjt = min
1≤ℓ≤d

stIt
ℓ

with It1, . . . , I
t
d

i.i.d.∼ Uniform({1, . . . , n}), (41)

the distribution of eλs
t
jt is dominated by (resp. dominates) the case where d= 2 for λ > 0 (resp.

λ < 0). It is sufficient to consider d = 2. Again, we assumed without loss of generality that the
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indices are ordered such that at time t we have st1 ≤ st2 ≤ · · · ≤ stn. The difference in the two

expectations can be evaluated as

E[eλs
t
jt |st]−E[eλs

t
kt |st] = 1

n2

∑
1≤i<j≤n

(
eλs

t
i − eλs

t
j

)
≤ 1

n2

n∑
i=1

(
eλs

t
1 − eλs

t
i

)
=

1

n
− 1

n2
Zt

λ. (42)

The case for λ< 0 is analogous. □

Lemma 4. For λ∈ (− ln 1.5, ln 2), limsupt→∞Et
λ <∞.

Proof of Lemma 4. Define λ as

λ := sup{λ : limsup
t→∞

Et
λ <∞}, (43)

and similarly define λ as

λ := inf{λ : limsup
t→∞

Et
λ <∞}. (44)

Lemma 3 implies that λ< 0<λ for any n∈Z+. Note that for any n, t∈Z+, the function λ 7→Et
λ is

convex. As a result, for any λ ∈ (λ(n), λ(n)), we have limsupt→∞Et
λ <∞. It now suffices to show

that λ≥ log 2 and λ≤− log 1.5.

For the moment, let us assume that n is even for convenience, and write n = 2L with L ≥ 2;

generalizing this is straightforward.

Consider λ0 ∈ (λ(n),0). We will investigate for what values of λ > 0 we have a finite

limsupt→∞Et
λ.

Again, we consider the recursive relationship between Et
λ and Et+1

λ , and assume without loss of

generality that st1 ≤ · · · ≤ stn. Let ϵ∈ (0,1) be a constant to be specified, and denote by Et the event

that eλs
t
L < ϵZt

λ/n. We then decompose Eλ(t+1) into the combined contribution from two terms

as

Eλ(t+1)=E[Zλ(t+1)]

=E
[
Zλ(t+1)|Et

]
+E

[
Zλ(t+1)|Ec

t

]
. (45)

For the first term in (45), note that whenever eλs
t
L < ϵZt

λ/n, we have∑
1≤i<j≤n

eλs
t
i − eλs

t
j ≤

L∑
i=1

n∑
j=L+1

eλs
t
i − eλs

t
j (46)

≤L(n−L) ·Zt
λ ·
(
ϵ

n
− 1

n−L

(
1− ϵL

n

))
(47)

=−(1− ϵ)LZt
λ. (48)
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Thus, in this case, Claim 1 can be refined into

E
[
e
λst

jt − eλs
t
kt
∣∣Et, s

t
]
≤ 1

n2

∑
1≤i<j≤n

eλs
t
i − eλs

t
j ≤−1− ϵ

n2
LZt

λ. (49)

Similar to (36), we now have

E
[
Zt+1

λ

∣∣∣Et, s
t
]
≤
(
1− 1− e−λ

n

)
Zt

λ +(eλ − 1)E
[
e
λst

jt

∣∣∣Et, s
t
]

≤
(
1− 1− e−λ

n

)
Zt

λ +(eλ − 1)
(
E
[
eλs

t
kt

∣∣∣Et, s
t
]
− 1− ϵ

n2
LZt

λ

)
=

(
1− eλ − 1

n

(
e−λ − 1+

(1− ϵ)L

n

))
Zt

λ.

Thus,

E
[
Zt+1

λ |Et

]
≤
(
1− eλ − 1

n

(
e−λ − 1+

(1− ϵ)L

n

))
Et

λ. (50)

For the choice of L= n/2, the coefficient is strictly less than 1 for any λ < log 2 granted that we

choose ϵ sufficiently small.

Now we consider the second term in (45) under the event Ec
t . By a natural extension of Lemma 3,

we have

E
[
Zt+1

λ |Ec
t

]
≤E

[(
Cλ +(1− γλ)Z

t
λ

)
·1

e
λst

L≥ϵZt
λ
/n

]
≤Cλ +(1− γλ)E

[
Zt

λ ·1e
λst

L≥ϵZt
λ
/n

]
.

The expectation term on the right-hand side can be further expanded as

E
[
Zt

λ · 1
e
λst

L≥ϵZt
λ
/n

]
=

∫ ∞

0

P
(
Zt

λ · 1
e
λst

L≥ϵZt
λ
/n

≥ x
)
dx ≤ n +

∫ ∞

n

P
(
Zt

λ ≥ x, eλs
t
L ≥ ϵ

n
Zt

λ

)
dx.

When eλs
t
L ≥ ϵZt

λ/n, we must have

L−1∏
i=1

e−λsti =
n∏

i=L

eλs
t
i ≥
(
ϵ

n
Zt

λ

)n−L+1

, (51)

or equivalently for λ− ∈ (λ,0),

L−1∏
i=1

eλ−sti ≥
(
ϵ

n
Zt

λ

)−λ−(n−L+1)

λ

. (52)

By the AM-GM inequality,

Zλ−(t)≥
L−1∑
i=1

eλ−sti ≥ (L− 1)

(
ϵ

n
Zt

λ

)−λ−(n−L+1)

λ(L−1)

. (53)
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Putting things together, we obtain

E
[
Zλ(t+1);Ec

t

]
≤Cλ +(1− γλ)

n+

∫ ∞

n

P

(
Zλ−(t)≥ (L− 1)

(
ϵ

n
x

)−λ−(n−L+1)

λ(L−1)

)
dx


≤Cλ +(1− γλ)

(
n+

∫ ∞

n

Eλ−(t)

L− 1
·
( ϵ
n

)λ−(n−L+1)

λ(L−1) ·x
λ−(n−L+1)

λ(L−1) dx

)
=Cλ +(1− γλ)

(
n+

Eλ−(t)

L− 1
·
( ϵ
n

)λ−(n−L+1)

λ(L−1)

∫ ∞

n

x
λ−(n−L+1)

λ(L−1) dx

)
, (54)

where the last inequality uses Markov’s inequality. The entire coefficient in front of the integral is

uniformly bounded in t since limsupτ→∞Eτ
λ−

<∞; whenever λ<−λ−
n−L+1
L−1

, the integral converges.

Combining (50) with (54), we have

Et+1
λ ≤ (1− γ′)Et

λ +C ′

for some positive constants γ′ and C ′, whenever λ<min{−n−L+1
L−1

λ−, log 2}. Thus, limsupt→∞Et
λ <

∞. Sending λ− → λ gives

λ≥min
{
− n−L+1

L− 1
λ, log 2

}
. (55)

With an analogous argument by considering λ+ ∈ (0, λ(n)) and λ< 0, we obtain

Eλ(t+1)≤ (1− γ′′)Et +C ′′

for some γ′′,C ′′ > 0, granted that λ>max{−n−L+1
L−1

λ+, log
2
3
}. Sending λ+ → λ gives

λ≤max
{
− n−L+1

L− 1
λ, log

2

3

}
. (56)

(55) and (56) together form a system of two piecewise linear inequalities. Solving it gives

λ≥ log 2 and λ≤ log
2

3

as desired. □

Proof of Theorem 2. The theorem follows directly from Lemmas 1 and 4. □

8.5. Proofs from Section 4

Proof of Lemma 2. We first prove that π0 >
1
2
. Note that (7) can be written as∑

M≥1

(πM +π−M+1 − 1) = 0. (57)

We claim that if π1 + π0 = π2
0 + π0 − 1 < 0, which implies π0 ≤ 1

2
, then all the terms in the

summation (57) is negative, which is a contradiction. We have πM +π−M+1−1 = π2M

0 +π2−M+1

0 −1

by (8). Let f(M) = 1− π2M

0 − π2−M+1

0 . Assume to the contrary that π0 ≤ 1
2
. Then f(1) > 0, and
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clearly we have limM→∞ f(M) = 0. We will show that f(M) ≥ f(M + 1) for all M ∈ Z+. The

derivative of f(M) with respect to M is

df(M)

dM
=−2M · log(2) ·π2M

0 · log(π0)+ 2−M+1 · log(2) ·π2−M+1

0 · log(π0), (58)

where log is the natural logarithm. Since π0 ≤ 1
2
by assumption, we have log(2) · log(π0)< 0. Thus,

(58) has the same sign with

2M ·π2M

0 − 2−M+1 ·π2−M+1

0 =
22M−1 ·π2M

0 −π2−M+1

0

2M−1
. (59)

Since 2M > 2M − 1 for all M ≥ 1 and 2π0 ≤ 1, we have

22M−1 ·π2M

0 −π2−M+1

0 = (2π0)
2M−1 ·π2M−2M+1

0 −π2−M+1

0 ≤ π2M−2M+1
0 −π2−M+1

0 < 0 (60)

for all M > 1, where the last inequality follows from the fact that 2M − 2M +1> 0, −M +1< 0,

and 0<π0 < 1.

Now we prove that π0 <
3
4
. Assume to the contrary that π0 ≥ 3

4
. Then clearly we have

∞∑
i≥1

πi =
∞∑
i≥1

π2i

0 ≥ 0.8. (61)

Now we want to find an upper bound for
∞∑
i≤0

(1−πi) =
∞∑
i≥0

(1−π2−i

0 ). (62)

Since
1−π2−i

0

1−π2−i−1
0

= 1 + π2−i−1

0 is an increasing function for i ≥ 0, we can upper bound (62) by the

following geometric series

(1−π0)+ (1−π2−1

0 )+ (1−π2−2

0 )(1+ r+ r2 + ...)≤ 0.6, (63)

where r=
1−π2−2

0

1−π2−3
0

. But, (61) and (63) contradict to (7). □

Lemma 5 (Lipschitz condition). The finite model satisfies the Lipschitz condition in L1-

distance.

Proof of Lemma 5. Let x= (xi)i∈Z and y= (yi)i∈Z be two states of the finite model. By (3), we

have

|F (x)−F (y)|=
∞∑

i=−∞

|(xd
i−1 −xd

i )− (xi −xi+1)− (yd
i−1 − yd

i )+ (yi − yi+1)|

≤ 2
∞∑

i=−∞

|xd
i − yd

i |+2
∞∑

i=−∞

|xi − yi|

≤ (2+2d)
∞∑

i=−∞

|xi − yi|

= (2+2d)|x− y|,
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where in the first inequality we used the triangle inequality, and in the second inequality we used

the expansion (a− b)n = (a− b)(an−1 + an−2b+ ...+ abn−2 + bn−1) and the fact that 0≤ xi, yi ≤ 1

for all i∈Z. □

8.6. A simple asymmetric case

In this section, we further investigate whether the token system under the minimum token selection

rule behaves well with asymmetric agents. In the context of kidney exchange, it is natural to ask

whether large (or small) hospitals will have some advantage, or cause the system to be unstable. The

system with asymmetric agents can also be modeled as a density dependent Markov chain. However,

note that even in the symmetric case, there was no closed form expression for the equilibrium

point. Thus, instead of finding a closed form expression for the equilibrium point, the analogous

differential equations for the asymmetric case can be used for numerical studies.

We discuss a very simple asymmetric setting with two types of agents referred to as A and B,

and let d= 2 for simplicity. Assume that there are n agents where n is an even integer, and there

are two types of agents: type A and type B. Agents within the same type have the same service

requesting and providing rate. Assume that there are n/2 many type A agents and n/2 many type

B agents for simplicity. Define the service requesting distribution by P = (pi)i∈A, where pi = pA

if agent i is type A and pi = pB if agent i is type B. This gives n
2
(pA + pB) = 1. Similarly, define

the service availability distribution by Q= (qi)i∈A, where qi = qA if agent i is type A and qi = qB if

agent i is type B. This gives n
2
(qA + qB) = 1.

Similar to the finite model, in order to fit the system with asymmetric agents to the definition of

a density dependent Markov chain, we can assume that each agent has an exponential clock with

mean npi. Ticking of agent i’s clock corresponds to a service request by i. Note that the service

requesting and service availability probabilities change as n changes, but the ratio between the

probabilities do not change. Thus, let us assume that pB = αpA and qB = βqA for some constants

α and β which are independent of n.

Let zAi (t) be the fraction of type A agents with at least i tokens at time t among the type A

agents and zBi (t) be the fraction of type B agents with at least i tokens at time t among the type B

agents. Similar to the finite model, we will represent the state of the system by z⃗(t) = (z⃗A(t), z⃗B(t))

where z⃗A(t) = (..., zA−1(t), z
A
0 (t), z

A
1 (t), ...) and z⃗B(t) = (..., zB−1(t), z

B
0 (t), z

B
1 (t), ...). We drop the time

index t when the meaning is clear. Note that the initial state of the system is z⃗(0) = (z⃗A(0), z⃗B(0)),

where zAi (0) = zBi (0) = 1 for all i≤ 0, and zAi (0) = zBi (0) = 0 for all i≥ 1.

We will denote the set of possible transitions from k⃗ = nz⃗
2

by L ={
eAij, e

B
ij, (ei,−ej), (−ei, ej) : i, j ∈Z, i ̸= j

}
, where eAij = (eij, 0⃗) and eBij = (⃗0, eij). Here, eij is an

infinite dimensional vector of all zeros except the i’th index (which corresponds to the index of
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zAi (t) or z
B
i (t)) is −1 and the j’th index (which corresponds to the index of zAj (t) or z

B
j (t)) is 1, ei

is an infinite dimensional vector of all zeros except the i’th index (which corresponds to the index

of zAi (t) or z
B
i (t)) is −1. For example, eAij corresponds to the transition where the service requester

is a type A agent with i many tokens and the service provider is a type A agent with j− 1 many

tokens. Using these notations, we can compute the following probabilities:

• The probability that the service requester is a type A agent with imany tokens is 1
1+α

(zAi −zAi+1).

Denote this probability by cAi .

• The probability that the service requester is a type B agent with i many tokens is α
1+α

(zBi −

zBi+1). Denote this probability by cBi .

• The probability that the service provider is a type A agent with j − 1 many tokens is

( 1
1+β

)2((zAj−1)
2 − (zAj )

2) + 2( 1
1+β

)( β
1+β

)(zAj−1 − zAj )z
B
j + 2( 1

1+β
)( β

1+β
)(zAj−1 − zAj )(z

B
j−1 − zBj )

1
2
. Denote

this probability by dAj−1.

• The probability that the service provider is a type B agent with j − 1 many tokens is

( β
1+β

)2((zBj−1)
2 − (zBj )

2) + 2( 1
1+β

)( β
1+β

)(zBj−1 − zBj )z
A
j + 2( 1

1+β
)( β

1+β
)(zAj−1 − zAj )(z

B
j−1 − zBj )

1
2
. Denote

this probability by dBj−1.

Hence, we have βeAij
(z⃗) = cAi d

A
j−1, βeBij

(z⃗) = cBi d
B
j−1, β(ei,−ej)(z⃗) = cBj d

A
i−1 and β(−ei,ej)(z⃗) = cAi d

B
j−1.

Clearly the condition (2) is satisfied since the jump rate is bounded in the system, and given

the constants α and β, the Lipschitz condition can be easily checked. Using Kurtz’s theorem, the

differential equations, which characterizes the infinite system with asymmetric agents can be found

as

dzAi
dt

=−cAi + dAi−1 for all i∈Z, (64)

dzBi
dt

=−cBi + dBi−1 for all i∈Z. (65)

Since agents start with 0 tokens and exchange one token at each transition of the system, the

expected number of tokens agents have is 0, and it can be translated as follows:

∞∑
i≥1

zAi −
∞∑
i≤0

(1− zAi )+
∞∑
i≥1

zBi −
∞∑
i≤0

(1− zBi ) = 0. (66)

As we mentioned earlier, we are unable to find a closed form expression for the equilibrium point,

but instead one may perform numerical studies using (64), (65) and (66).

We ran simulations in order to conduct comparative statics on having relatively more agents of

one type and on the dominance of one type over the other. In both simulations, we fix the number

of agents to n= 10, and let the system run until t= 2 · 107. Let f be the number of type A agents

and pA,f,M be the probability of in the long run, we have −M ≤ sti ≤M , where M ∈ Z+ and i is
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M/f 2 4 6 8
1 0.6486 0.6476 0.6475 0.6469
2 0.8787 0.8753 0.8734 0.8706
3 0.9523 0.9510 0.9515 0.9506
4 0.9769 0.9767 0.9777 0.9780
Table 1 The values for pA,f,M where

pB = 10pA and qB = 10qA.

M/f 2 4 6 8
1 0.6434 0.6410 0.6398 0.6405
2 0.8684 0.8645 0.8609 0.8587
3 0.9521 0.9512 0.9502 0.9495
4 0.9803 0.9809 0.9816 0.9824

Table 2 The values for pB,f,M where pB = 10pA and

qB = 10qA.

a type A agent. Similarly define pB,f,M . In the first simulation, we fix α and β, and vary f (see

Tables 1 and 2). In the second simulation, we fix f and vary pA (see Tables 3 and 4). Observe that

in all simulations, having two types of agents does not create any instability as agents’ number of

tokens remain between −4 and 4, with high probability.

M/pA 0.02 0.04 0.06 0.08 0.1
1 0.6478 0.6469 0.6463 0.6453 0.6447
2 0.8752 0.8742 0.8735 0.8726 0.8714
3 0.9518 0.9520 0.9522 0.9527 0.9527
4 0.9774 0.9779 0.9786 0.9794 0.9797

Table 3 The values for pA,5,M .

M/pA 0.02 0.04 0.06 0.08 0.1
1 0.6410 0.6418 0.6431 0.6437 0.6452
2 0.8632 0.8657 0.8681 0.8697 0.8713
3 0.9508 0.9516 0.9524 0.9525 0.9527
4 0.9811 0.9810 0.9807 0.9801 0.9798

Table 4 The values for pB,5,M .
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